Feeds:
Posts
Comments

Posts Tagged ‘student created content’

Recording a podcast

Mazie recording her paragraphs for the podcast

I realize the last three blogs I’ve posted here have been about astronomy instead of the elements (although the elements are mentioned here and there). I tend to write about what’s been on my mind, and since I’m not teaching chemistry this year, but I am teaching astrobiology, you’ve been getting quite a bit about the Moon and now about Mars and the stars. I hope you don’t mind.

My astrobiology students are now hard at work creating podcasts for the 365 Days of Astronomy website. The first episode was uploaded this evening and is scheduled to “air” on Friday, Dec. 2. Three other episodes will follow, on Dec. 8, 14, and 19. Here’s a link to the website: http://365daysofastronomy.org/

Recording podcast audio

Cali records her portion of the podcast

This first episode was researched and recorded by Mazie, Cali, and Tia and is about how stars are named. They describe the four most common methods: Common names (such as Bellatrix or Rigel or Sirius), the Bayer naming system (such as Alpha Centauri), the Flamsteed System (such as 61 Cygni), and various star catalogs such as the various Durchmusterungs, the Henry Draper, Hipparcos, etc.

Title page of Uranometria

Title page for Uranometria by Johann Bayer

Rather than steal their thunder, I am attaching the audio file here:

Naming_Stars_Podcast

And here is the transcript of their presentation:

Naming_Stars_transcript

Unfortunately, as I was preparing this post and gathering images (such as this one of Virgo taken from Johann Bayer’s Uranometria) I discovered that we made one mistake. We had listed the star Zuben Eschamali as being in Libra when it is really in Virgo. This was my mistake, and one I should have caught before now.

Virgo constellation

Virgo as drawn in Uranometria. The bright stars on the left are Zuben Elgenubi and Zuben Eschamali. The very bright star is Spica.

Hopefully that is the only mistake we’ve made. The students did the research, with notations and edits by me, developed it into a script, and recorded their parts this last week. We went through each paragraph (and sometimes each sentence) several times to get good takes. I also recorded myself at home doing the second episode, which is on my own take on the Drake Equation. I’ll have that one edited and transcribed by tomorrow evening.

I’ve also ran into a major difficulty in that my laptop’s hard drive died last week and I’ve been trying to recover files and software ever since. The Mac store I went to would only install the system software that originally came on my computer, even though I had upgraded to Snow Leopard. So now much of my software that I’ve reinstalled doesn’t work because I have to wait for the Snow Leopard disk to arrive in the mail to get my OS up to speed. Then there is the whole fiasco with buying Final Cut Studio off of e-Bay only to have it arrive without the installation disks. So I got a refund and have to mail it back tomorrow and wait for my new purchase (hopefully complete this time) to arrive. In the meantime, I’ve been editing these podcasts using iMovie and Audacity – not my first choice, but it is working.

The worst part of losing the hard drive is that I had literally thousands of photos on it from my research at the Chemical Heritage Foundation and from visits I’ve made to mine sites since then that I don’t want to lose, so I will need to pay an extra amount to get the data recovered. Hopefully it can be. Now I know to back up all my photos as well as the video projects I had already backed up.

I hope you enjoy the podcasts. I’ll let you know how the data recovery goes.

Read Full Post »

Magnet activity

Shannon and Kenzie demonstrate magnets

I’ve written before about my views on student engagement and involvement in education; that students learn best when they are most engaged and involved in the educational process (here’s a link to a previous post on the subject). This is all based on 20 years of observation that I am usually the person who learns the most in my own classroom, simply because as I prepare materials to present to my students, I have to learn them very thoroughly myself, and as I teach these materials, I am making a type of commitment to the concepts; staking my own reputation that what I am teaching is correct. The gist of my philosophy is that if I can get students to become teachers themselves and fully commit to the concepts they are teaching then those concepts will never be forgotten. You could compare this to the old often-repeated adage:

Feed a man a fish, and you feed him for a day. Teach him how to fish, and you feed him for a lifetime.

To which I would add: Train a man how to teach others how to fish, and you feed a whole village for eternity.

A number of years ago, while teaching at Juab High School in Nephi, Utah, I began a program to take my advanced physics and Chem II students to the Nephi Elementary School once per month to present lessons to the classes. I worked with the teachers there to come up with lessons that fit into their curricula but also could be easily demonstrated. My students had to practice the demonstration, write up a brief 20-minute lesson plan with a handout, and receive feedback from their peers, myself, and the elementary teachers.

Cael and his vacuum pump

Cael demonstrates his vacuum pump

It wound up being one of the most effective projects I ever developed. My students were always a bit nervous the first time, but after seeing how excited the elementary kids were, they caught the same enthusiasm and soon were asking me when our next visit would be. They also presented these mini-lessons at a back-to-school night at the end of the year for their parents and other students to see. It was a definite win-win activity; both the elementary students and my students benefited greatly and it was worth all the effort we put into it.

Since teaching at Juab High School my teaching assignments have not allowed me to continue this program, although at Mountainland Applied Technology College my multimedia students did participate in the Mars Exploration Student Data Team program and presented at a symposium at Arizona State University in 2004. My students also created a two-hour documentary on the history of AM radio in Utah that aired on KUED, Salt Lake’s PBS station, in 2007. You could say that they were teachers and content creators from these experiences.

Now that I am back at a high school teaching science, I have reinstated the students-as-teachers concept through what I am calling the Walden Elementary Science Demonstration Program. I’ve even written a small grant for the Air Force Association last week to support this. On Friday, Nov. 12, I took my astronomy students down to the elementary classrooms at Walden to present lessons. Just as at Juab Elementary all those years ago, my students picked a topic and a demonstration, practiced it, wrote up a script or lesson outline, and then presented in the classes. I videotaped parts of the presentations and took photos. The elementary students were excited, engaged, actively getting their hands on materials, asking questions, and participating. My students did extremely well for our first time. Here are some of the presentations that they did:

Lunar Crater Activity

Annette and Olivia demonstrate lunar cratering

Shannon and Kenzie presented the properties of magnets and did a demonstration of a gravity assist maneuver using neodymium magnets and steel shot to represent planets and a space probe (I once got two neodymium magnets stuck up my nose while presenting this same demonstration to a group of teachers at the Jet Propulsion Laboratory. It’s a long story . . . .) Shannon and Kenzie had the challenge of adapting their lesson to be understandable for kindergarten students and for 4-6 graders (they presented twice). They demonstrated some large industrial strength iron horseshoe magnets I’ve had all these years and the kids had fun trying to pull them apart.

Cael and Koplin taught about how difficult it is for humans to survive in space, and demonstrated the properties of a vacuum by blowing up marshmallows. Cael’s father helped him construct a homemade vacuum chamber out of a Bell canning jar and a hand pump (very ingenious, actually, as you can see in the photo). Students had fun pumping out the chamber, seeing the marshmallows expand, and then releasing the valve and seeing them suddenly shrink again.

Olivia and Annette demonstrated how the surface of the moon formed using the lunar cratering activity (dropping rocks into a pan of flour and cocoa powder). They also tied it into a map of the moon, and had the kindergarten students repeat back what they had learned to win a prize – a piece of rice krispy treats coated with frosting to look like the moon’s surface.

Inertial scale activity

Scotty and Colman demonstrate the inertial scale

Scotty and Colman taught inertia and momentum by demonstrating the properties of an inertial scale I made a few years ago. It’s basically a metal ruler with a film canister at the end clamped down on a table’s edge. The more heavy a rock you place in the canister, the slower the ruler will vibrate due to the rock’s momentum. They also demonstrated dominoes, yanking a piece of silk out from under an object, etc.

Mars site selection activity

Maxson teaches about Mars landing sites

Maxson talked about the surface of Mars and how hard it is to find a good landing place. His partner wasn’t able to attend that day (he had an activity in another class that went unexpectedly long), but Maxson was able to fill in for his missing partner by having the 4-6 graders look for possible landing sites on maps of Mars.

Alexi and Erika presented the scale of the solar system to 1-3 grade students, showing them various balls that represented the sizes of the sun, Jupiter, Earth, Mars, etc. They also showed GoogleEarth. Then they took the students outside and had them stand in positions of relative distances for the planets. I didn’t get a chance to go outside and photograph that part of the activity, but I heard from the teachers that it went very well.

Scale of the solar system

Alexi and Erika demonstrate planetary scales

For me, the best part of doing these presentations is at the end of class when all my students gather back in my classroom to report on how it went. I wish I had had my camera running. They were telling each other what went right and wrong, what the elementary students had said and done, and I knew at that moment I had achieved my real purpose: my students were excited about science, and this was an experience they will never forget. As for the concepts they had to learn in order to make their presentations, I think it’s safe to say they will never forget them, either. I uploaded the photos I had taken to my laptop and did a slideshow at the end of class so that they could all see what the other teams had done. At the end of the year, we’ll do a video presentation as well.  Not bad considering I hadn’t told them about this until two days before their presentations, so that they had only two days to choose and prepare their lessons. They did great! Now in December my chemistry students get their turn.

Read Full Post »

The Five Elements

The Five Elements

As I teach chemistry and astronomy again for the first time in several years, I’m having a lot of fun getting back into the physical sciences with all of the lab experiences I’d collected and developed over the years before I started teaching multimedia exclusively. I’ve also added a number of excellent activities that I picked up from my experiences with NASA and from various conferences and presentations. It’s also a lot of fun to start incorporating my expertise in media design and technology in ways I never could before, as well as the materials I collected at Chemical Heritage Foundation in 2009. For example, I just finished teaching a Keynote presentation on Greek matter theories that I put together myself using photos, drawings, illustrations, and 3D animations (mostly my own) and information collected at CHF. I have all the files stored on various hard drives that all hook into my Mac Powerbook (about four terabytes total). Some of the images I pulled off the Internet at school using our wireless router and Airport technology, and once the Keynote was finished, all I had to do was hook my laptop up to a projector and give the presentation (complete with animations and audio clips) using an infrared remote. Here’s the presentation, in Powerpoint format. If you want to use it, be my guest:

Greek_Matter_Theories

To me, all of this seems remarkable, even miraculous. And here I am writing about it on a Blog, publishing my experiences instantaneously where anyone in the world can read them, and even sharing the presentation itself. Yet I feel as if I’m only just scratching the surface of what these new technologies can do. That’s part of why I’ve been working on this Elements Unearthed project for the past several years; there are so many connections between science practitioners and students that can still be made and which I hope to develop, so many innovative methods of teaching that no one’s thought of yet. I’m a digital immigrant; my students are natives. I’m always playing catch up to what they’re already using daily.

Engraving of Democritus

Engraving of Democritus

So far this blog has been written entirely by me (David Black) since it debuted in Oct., 2008. Now that I’m teaching chemistry again I am turning over much of the posting to my students, who will be taking turns once per week adding information about the research project they are pursuing. They have chosen between an element (such as copper), a material (such as cement), a method of generating energy (such as solar power), or a time period from the history of chemistry (such as medieval European alchemy) and are compiling notes into an MS Word document with references.

With each post, they are to include about 500-800 words of writing in their own words culled from all of their research notes and include relevant images or diagrams. They are also producing a nicely laid out document such as a newsletter, poster, or brochure that will be converted to PDF format and linked to this blog for download. It may take a week or two for the first few student posts to contain these linked files, but they will come. My hope is that any chemistry teachers or students out there who are reading this blog will be able to download these linked files and use them in your own classrooms.

Plato and Aristotle

Plato and Aristotle, Detail from The School of Athens by Raphael

During second term, the students will be developing and practicing a hands-on demonstration that involves some property or aspect of their topic. We’ll present these demonstrations to the elementary classes at Walden (I’ve already met with the teachers to plan this out) and the students will also present them to each other for feedback. During third term, we’ll create a more extensive project from their topic: a detailed Powerpoint or Keynote presentation or a three-minute video or a computer game. They’ll present these in class again, then fourth term put all of this together for a back-to-school science night for the public and their parents and siblings. We’ll videotape these presentations and share them with you as well.

I’ve done all of these things before in various multimedia or chemistry classes, but this is the first time that technology and opportunity have combined to allow me to put it all together. I am still looking to build partnerships with local organizations (museums, mining associations, etc.) that will combine my students’ media skills with their content. I’ll still visit mining towns, take tours of museums, and continue to post about how technology can be used in the science classroom. I also plan on writing more grants and professional articles. I’ll continue to create longer format videos to go with the student short videos (the Tintic Mining District is up next after I make some changes to the beryllium videos).

This blog has certainly been successful in what I’ve intended it to be. Last month (September) was the best month so far with over 2700 visitors to the site. I’ve had over 23,500 visitors total, most of them this year. I would love to hear from any science teachers or students that have found this site useful.

I look forward to seeing what my students come up with as they post about their topics. I’m encouraging them to do more than just a list of properties, to dig deeper and talk about the unusual stories and histories of each element or material. And now, I am pleased to introduce my chemistry students’ blog posts . . . .

Read Full Post »

Walden School

Walden School of Liberal Arts in Provo, Utah

The past month has been crazy busy as I’ve prepared for my new teaching job at Walden School of Liberal Arts in Provo, Utah. I had intended on writing at least six blog posts in August and interviewing at least one person, but didn’t do any of it; instead, I’ve been writing curricula, lesson plans, preparing my classroom, and going on a four-day backpacking trip with my students to the high Uintah Mountains, up past Mirror Lake to Naturalist Basin. My legs are still recovering. Now this week has begun our first week of classes: I am teaching two sections of Honors Chemistry and one section of Astronomy on Mondays, Wednesday, and Fridays and one section of Computer Technology and one of Multimedia on Tuesdays and Thursdays. I’ll probably also pick up a Video Production class afterschool as well on those days. So far we are three days into the school year and things are going well.

My chemistry and multimedia students will be helping with the Elements Unearthed project in much the same way as my Media Design students did at MATC, except I am now at a school that actually believes in expeditionary learning (field trips) and project-based learning (PBL). Plus having dedicated chemistry students will help improve the accuracy and relevance of the student videos. Here’s what they are going to do:

David Black classroom

My classroom at Walden School

During the first term, each student will select a topic from one of four categories: elements, materials, energy processes, or the history of chemistry. They will conduct background research and develop an extensive set of notes with references, which they will condense into some form of print media, such as a poster, newsletter, brochure, etc. which they will convert to .pdf format. They will act as guest hosts of this blog, each one taking a turn to write a post entry about their topic and attaching their .pdf file to it for all to see.

During second term, they will come up with some sort of demonstration that relates in some way to their chosen topic, and practice it in class, then on a Friday in November we’ll take the whole class downstairs to the elementary classrooms (Walden School is a K-12 Montessori school) and present their demonstrations to the students, as well as handing out a simple worksheet or activity the students can take home. The chemistry students will also present their demonstrations to each other just before winter break and receive feedback.

David Black's Classroom

My classroom again

During third term, the chemistry students will add a Powerpoint or Keynote presentation or a video to their topic, which will be presented to their peers and added to this blog site. They will also present again to a different elementary class.

During fourth term, they will present their demonstration, Powerpoint, video, etc. to the public and their parents at a Back-to-School Science Night at the end of April or start of May. We’ll videotape the proceedings and add the videos to this blog as well.

This may seem like a huge project (and it is) but I’ve done all of this before when I’ve taught chemistry at Juab High School in Nephi (except for the media elements – that comes from MATC). Those students who wish can utilize the footage and photos I’ve already gotten for the Elements Unearthed project to do their element or material reports. They can also compete in the Chemical Heritage Foundation’s “It’s Elemental” video competition. My multimedia students will help on the longer videos I’m creating for this blog, YouTube, and iTunes (we’ll set up the iTunes account in our Computer Tech. course).

So you see, I have landed in an ideal situation for classes that I love to teach coupled with a great group of students and an environment that works perfectly for this project. I’m very excited to see what will come out of it. At the very least, this blog should be quite a lively place.

Read Full Post »

Possible game interface for iPad

Mineral Identification App for iPad

Since Apple, Inc. announced the release of the iPad two weeks ago I’ve been reading a lot of comments and blogs about how useful this device might be in education. Some excellent posts are being written on the possibilities. Here’s one: http://www.edutechnophobia.com/2010/02/six-ways-the-ipad-will-transform-education/ I haven’t weighed in on the issue myself yet because I’ve been so busy preparing the first few podcast episodes that I keep promising for this site. But more on them later. As for the iPad, providing they add some capabilities such as USB, Flash support, and multi-tasking, I believe it will be a platform of great benefit to science teachers in the following ways:

1 – Replacing expensive textbooks: All of us who have been classroom teachers know that printed textbooks have become outrageously expensive and in technology and the sciences they are outdated before they even go to print. Yet having a handy source of general information on a subject that is grade-level appropriate and tied to national standards and comes complete with problem sets and review questions, test banks, on-line resources, and all the other associated items is a very valuable resource for teachers. If all of this can be ported to an e-book format and read on the iPad (with added interactive and multimedia touches) then the purchase of an iPad for each student becomes truly economically feasible for schools, especially when you factor in that it also replaces most needs for student computers and graphing calculators and merges all these technologies into one device.

2- On-line Testing: iPads have the capability of simplifying student assessment by making it readily and cheaply available at any time on-line. Teachers, with appropriate application support, will be able to assign and write quizzes, tests (both unit and end-of-year state tests), and other assessment tools which students can answer directly on the iPad and receive instantaneous feedback. Many states, including Utah where I am located, are moving their end-of-year testing away from pencil-and-paper multiple choice tests to on-line testing that can incorporate many forms of questions and be skills-based and well as knowledge-based. For example, a chemistry test could incorporate a virtual lab situation as a test question. Which brings up usage 3:

Interactive periodic table

Interactive Periodic Table App

3 – Virtual Science Labs: With the accelerometer and gestural controls of the iPad, science teachers and curriculum developers can program virtual labs that mimic a student actually picking up and weighing reagents for a chemical reaction, calculating the atomic weights and stoichiometric ratios, observing and analyzing the results (say of a virtual pH titration), and comparing student answers with accepted answers. Although this can’t take the place of hands-on science labs, it could certainly help to prepare the students for the real experience and help remediate students who miss the day of the lab, and reduce costs and disposal concerns. Virtual labs could also be created for Earth science (a virtual mineral field test kit), meteorology (viewing cloud cover, barometric, temperature, relative humidity, and other data and then predicting the weather), physics (lots of possibilities here), and so on.

4 – Student Collaboration: This is my big area right now – getting students to collaborate with each other to discover knowledge and synthesize it by creating their own content for the use of other students, such as this Elements Unearthed project to develop student-created podcasts of history and usage of the chemical elements. Imagine a group of students taking iPads on a field trip to a local watershed to record measurements of the water and soil, plant and animal life, pollutants, etc. and recording all of this data tagged with GPS data, then uploading it to the Internet and making it available to students worldwide. The iPad therefore becomes a remarkable enabling tool for citizen science. Imagine these same students using a wiki page to collaborate on writing up their results, or Google docs, or even sharing an iPad as a group to write up their findings in Pages and as a Keynote presentation, with supporting spreadsheets from Numbers. I have seen some amazing things done in classrooms through my work with NASA and my frequent attendance at science and technology teacher conferences using technologies that are far less capable than the iPad (including PDAs, GPS devices, etc.). Given teacher creativity, the appropriate types of applications, and an enabling technology like the iPad, and the educational possibilities are endless.

5 – iPads as Game Platforms: Games in education? This scares a lot of teachers, but it doesn’t have to. Just talk to the educational people at Apple, Micrsoft, and Sun Microsystems (to name a few) – and I have talked to them – and you’ll be amazed at what’s coming and how it can engage students in education through doing something that’s intrinsically fun. Education doesn’t have to be boring – in fact, it’s much more effective if it is fun. Now we just need to have the imagination to create the educational games and content. I have a few ideas, and I’m trying to talk to some software developers about some apps that would be ideal for the iPad and would help teachers to teach and review concepts in chemistry, physics, and other sciences. My media design students were assigned, as part of their learning of Adobe Director and Lingo programming, to design, create, build, and program a game on such topics as Mars exploration or the history of AM radio. They were simple yet powerful (and fun) games that could easily be ported to the iPad and used by other students. Imagine if we have students create iPad apps for other students . . . now that would be powerful learning, for both the creators and users.

I have much more to say on these issues, and others are already saying many of the same things. I am attaching a .pdf file with more complete examples here:

iPads_in_Science_Education

Meanwhile, the podcast episodes are still coming – I have prepared the full 45-minute version of Dr. Scerri’s interview on the history of the periodic table, which is now ready to export, and will begin editing it according to the scripts I’ve worked out into two 15-minute videos with some great images and animations to go with them (all ready to go). The three episodes on Greek matter theories and two on beryllium mining/refining are also coming but will take more time. I need to have at least 5-6 episodes complete and available by the time I present at the National Science Teachers Association conference in Philadelphia in March.

Read Full Post »

    This has been a busy week for me here at the Chemical Heritage Foundation. On Tuesday, June 23 I presented The Elements Unearthed project at a Brown Bag Lunch here. It’s pretty informal; people bring their lunches and eat while the speaker presents. I had 20 people attend, which was very nice. I would have been happy with five!. After a couple of technology glitches  I switched to Plan B and everything went well. In addition to talking about the purpose of the project (which is to document the history, uses, sources, mining, refining, and hazards of the chemical elements and industrial materials through student-created podcasts (whew!)), I showed some short samples of the student videos created this last semester for glass blowing and synthetic diamonds. I also showed some animations with narration of a podcast episode I’m working on this summer on the history of atomic theory. You saw a sample image on the last post of Aristote’s hylomorphism. That’s just one frame of a whole animation. But just so that you can have a sneak peak at what will be posted to iTunes and YouTube by the end of August, here is the first video clip of the students’ work:

This is a clip edited and narrated by Alex Anderson, who also took the photos of the rejects at the end of the clip. Videotaping was done by Sam Comstock, Megan Parish, and Bernardo Martinez. My only contribution was some final tweaking of the video color balance and lighting to match up the two cameras and smooth up some transitions; otherwise, the editing is all Alex’s work.  This is a representative sample of the kind of work you’ll see when these episodes are finally posted. I’ll post the samples for Synthetic Diamonds and Aristotle/Empedocles next time.

    Here is the PDF version of my presentation, sans video clips:   Elements_Unearthed_Presentation_6-23-09

    After my presentation, Ron Brashear, the Director of the Beckman Center here at CHF, took me out to lunch. As we talked, I was surprised to find that we knew some of the same people. He had worked at the Huntington Library in California, researching Edwin Hubble’s letters and personal papers. As part of his research, he visited Mt. Wilson Observatory where Hubble did most of his work. I’ve been up there several times with the NASA Explorer School workshops that I did for JPL, and so we’ve both met some of the astronomers and docents at Mt. Wilson and we’ve both visited the Lowell Observatory in Flagstaff, AZ. It is a small world, as they say.

Intersecting Bubbles

Intersecting Bubbles

    I find, however, that as I have these opportunities to work in the science education and science history fields, that I increasingly meet the same people, or at least find that we have the same aquaintances. Academic and scientific circles become increasingly rarefied and specialized, but sometimes they intersect in interesting ways. One of the great privileges of my life has been to meet some of the best minds in several scientific disciplines, including space exploration, astronomy, and now science history. I’m not going to drop names here, but when comparing them to so-called “celebrities” I’ve met, the scientists are the truly great ones, the ones we should be holding up as heroes. My fellowship here at CHF has already helped me to make contact with some of these personal heroes and to at least intersect their circles, and that may be the best part of all for a science groupie like me.

    The other activity I’ve worked on is a Preliminary Proposal for an Informal Science Education grant from the National Science Foundation, which was due yesterday at 5:00. After writing with blazing speed (I hope it makes sense), I wrestled with NSF’s Fastlane submission system and finally hit the submit button a few minutes after 5:00, only to realize that I forgot to justify one of my budget entries – to provide stipends for time and equipment to the mentor teachers/schools of the participating teams. Hopefully that won’t be enough to kill it.  I am submitting the Summary Page and the Project Description here for your evaluation. I would appreciate any feedback you can give.

Elements_Unearthed_Summary_6-25-09

Elements_Unearthed_Description_6-25-09

Read Full Post »

   For our last two entries I have written about the need and rationale for The Elements Unearthed project. In this post, I would like to present our third and final reasoning behind this project, journeying into the nebulous and contended realm of educational theory to present the conceptual underpinnings of our project.

 

   In the recent (Nov. 2008) issue of The Science Teacher, the editor, Steve Metz, commented on Project-Based Science instruction (PBS): “. . . learning is an active process and students learn most effectively when they are constructing a meaningful product.” He also said that “. . . individuals construct knowledge individually, through active and meaningful interactions with their environment, rather than by passively receiving transmitted information.”

 

   Student learning activities are often charted out on a continuum or dichotomy with Passive on the left and Active on the right. Such activities as taking notes, listening to lectures, and watching a video in class are passive whereas such activities as open-ended labs (inquiry labs) and research projects, simulations, and student presentations are active. I propose that this scale is only partially complete. Beyond hands-on or inquiry activities is a whole other level of student involvement in learning: students as creators, producing their own knowledge or making content for others. As such the spectrum would place Passive activities on the left as before, but now place Active learning in the middle and Creative activities on the right, where the student becomes responsible for creating material for and teaching knowledge to other students. Instead of being consumers of content or even interacters with content, students become the producers of new content. They become the teachers.

 

The Continuum of Constructivism Beyond Hands-On

The Continuum of Constructivism Beyond Hands-On

 

 

 

   In the diagram shown, certain educational models begin to fall into place when compared with this new scale of constructivism. On the left of the continuum, the teacher is the center of the classroom and dispenses knowledge with a focus on efficiency – pouring as many facts into the minds of the students as quickly as possible in assembly line fashion. As we move toward the middle, activities and assignments become more student-centered and involve the student actively, getting them out of their seats and into the lab or participating in a simulation. Instead of rote regurgitation of facts, student assignments become more open-ended and subjective, more imbued with meaning and interpretation; requiring evaluation and comparison on the part of the student. As we move beyond hands-on into the realm of student-created content, the student and the teacher reverse roles. The teacher becomes more of a coach or mentor, a facilitator of learning. This side of the continuum requires self-motivated students willing to dig for their own knowledge; having learned how to learn, they pursue their own lines of inquiry and even create their own experiments to uncover new knowledge. They ask questions and find answers, either through original experimentation or primary source historical research. They become scientists and teachers, training their peers and creating original content for fellow students and even for the general public. They now internalize their learning and own it; they won’t forget it or become uninterested or bored with it because they are fully engaged. Instead of writing a research paper that only the teacher will read, their work is actively critiqued and utilized by others. The focus now becomes quality and effectiveness of learning instead of efficiency.

 

   The effect of students creating their own content and knowledge is profound. Not only do students retain the knowledge they create longer (usually indefinitely) but the motivation and excitement of the students increases. As they see that what they are creating is meaningful and relevant, as they discover the scientist and historian within themselves, not only does their ownership of the knowledge increase but so does the quality and thoroughness of their work.

 

   I first discovered this effect by accident. As a first time teacher of chemistry at a small school in the Sierra Nevada Mountains called Tioga High School, I was presenting a unit on organic molecules and their naming conventions. Instead of lecturing on all the alkanes, alkenes, dienes, and so on I decided to let the students research this on their own and report their findings to the other students. This type of “jigsaw” activity can be useful as it puts responsibility on the students to find their own answers and learn from each other. I was also the computer teacher at this school, so I opened up the lab and had the students create their reports in the form of a Hypercard stack on the Mac Classics we had in the lab. They were required to present the information with graphics and also to create some kind of quiz or game based on their content that the other students would then take to demonstrate their knowledge. As students got into the project, I was amazed to see that instead of complaining about having to do research, they were actually asking me to open the computer lab during lunch so they could work on their Hypercard projects. They became very creative in how they presented their information but even more so on how they structured the quizzes; they wanted to do things that would be funny or surprising to their peers while also presenting accurate information. In the process, they truly learned the material. Their test scores were much higher on this unit than before.

 

   At other schools where I have taught I have instituted some form of student-created content made with the intent of teaching other students (instead of just the instructor). At Juab High School in central Utah, students in my chemistry and physics classes created demonstrations and mini-lesson plans on the chemical elements and principles of physics to present to each other for feedback, then perfect and present to students at two local elementary schools and to the public at a back-to-school science night. At Mountainland Applied Technology College, students have been required to look up tutorials on software packages such as Adobe Photoshop, practice them, write up their own lesson plan, and then present it to the other students. In each case student motivation and retention has been excellent. The only drawback is that such activities take more time than traditional rote learning so not as much content can be “covered.” But when the focus shifts from coverage to quality, I find that less is indeed more.

 

   Now I am not trying to say that the activities and types of assignments on the left are bad. There are times when a great deal of facts must be covered quickly and a lecture with note-taking is simply the best way of presenting the information. For students who are less self-motivated or less mature, the activities on the left and center are effective, and there are times when teachers need to have more control over the content and the direction of students. As students gain more experience and take more control of their own learning, they should naturally start moving toward the right side of the continuum.

 

   Even in the teaching profession we see this – teachers in training gain facts first in content area courseware, then go through various stages of methods courses and lesson plan development practice before presenting lessons to fellow teachers. They eventually move up to teaching a single class of students for a limited time, then move on to full scope student teaching for a whole semester under the direction of a mentor teacher, then finally gain their credential and full-time employment. If we expect our teachers to follow this process, then why not our students as well? They can become apprentices of knowledge, progressing to journeymen students who create their own content and conduct their own research, eventually progressing to masters who are now totally in charge of their own learning.

 

   This is what we propose for The Elements Unearthed Project. Student teams will progress from being researchers to scriptwriters to video editors, at each stage trained and mentored by experienced media professionals and local scientists and historians. Not only will they become producers of content, they will also learn to evaluate and present that content in an aesthetically pleasing and factually accurate way. Although the content they produce will be of benefit to many students and teachers worldwide, it is the student/community teams that will gain the most. Local museums will receive high quality media content that they can display in their museums and on the Internet. Local chemical plants and refineries will gain valuable public relations exposure by telling their stories to the wider community. Team members (students and mentor teachers) will gain video editing and scriptwriting skills, as well as the chance to do primary historical research. Communities will gain from increased public awareness of the history and environment of the town. In short, everyone benefits.

 

   It is our hope that you will support this project by becoming involved directly as a sponsoring organization (a refinery, chemical plant, or museum) or by creating a team of your own to document the history of your area. You can also contribute to this project financially and receive sponsorship credits in the final podcasts and on this blog. Next week we will discuss the timeline and phases of this project and more on how you can get involved.

Read Full Post »

Older Posts »