Feeds:
Posts
Comments

Posts Tagged ‘constructivism’

Starting out at a new school, I decided it was time to re-examine my personal philosophy of teaching and education.

Over the last several years, as I have been reporting my experiences in these blogs, I have paid attention to how effective I am as a teacher and what sorts of activities and lessons seem to resonate with students and provide memorable learning opportunities for them. From this I have developed my own model of education, which I have shared at conferences and workshop sessions. I will be starting a Doctorate of Education (EdD) program this fall at the University of Northern Colorado, specializing in Innovation and Education Reform. This will be a means for backing my theories up with empirical research, not just the anecdotal evidence I have now. I already know what I want to do for my doctoral thesis.

This is my revised model so far, with examples from my teaching experiences:

Creative Classroom Diagram v3-s

This is my revised model of education, what could also be called the Levels of Engagement model. The purpose of education, in my experience, is to move students from ignorance (no knowledge of a subject) through passive learning (sitting and watching or listening) to active learning (hands-on, experiential) and beyond to creative learning (students as explorers, teachers, and innovators). Students move from being consumers of educational content to interacting with content to creating new educational content or new science, engineering, art, math, or technology. The students become makers, designers, programmers, engineers, scientists, artists, and problem solvers.

I call this the Creative Classroom model, as the goal is to move students from Ignorance (lack of knowledge or experience with a subject) through the stages of being a Passive Learner (sitting and listening to the teacher or a video and consuming content) through being an Active Learner (students interacting with content through cookbook style labs) to becoming a Creative Learner (students creating new content as innovators: teachers, makers, programmers, designers, engineers, and scientists). Let’s look at these levels in more detail. It could also be titled the Levels of Engagement model, as moving to the right in my model signifies deeper student engagement with their learning.

Level 0: Ignorance

Ignorance is the state of not having basic knowledge of a subject. This isn’t a bad thing, as we all start out in this state, as long as we recognize our ignorance and do something about it. What our society needs are more creative and innovative people, not people who are passive or even willfully ignorant.

Ignorance is not bliss. What a person doesn’t know may indeed hurt him or her – if, for example, you don’t know that mixing bleach with ammonia will produce chlorine gas, you could wind up with severe respiratory problems. A basic literacy for science and engineering concepts is necessary for any informed citizen, since we live in a technological age with problems that need solving and can only be solved through science and technology.

If you do not understand science and technology, you can be controlled by those who do. How many people actually understand the technology behind the cell phones they use every day? They leave themselves vulnerable to control by the telecom companies that do understand and control this technology. If you don’t understand the importance of Internet privacy and share personal information on a website or Facebook page, you leave yourself vulnerable to people or corporations that can track your web searches or even stalk you online (or worse). I am fairly ignorant of the basic techniques for repairing my car. This leaves me vulnerable to paying the high prices (and the possible poor service) of a local mechanic, when I could save lots of money and ensure quality if I only knew how to do it myself.

As teachers our first responsibility is to lead students away from a state of ignorance. This seems simple enough, but anyone who teachers teenagers (and even some so-called adults) will know that some of them insist on remaining willfully ignorant, usually because they mistakenly think that they already know everything they need to know, which is never true of anyone. As the Tao Te Ching says: “To know what you know, and what you do not know, is the foundation of true wisdom.” So the first step to becoming a creative learner is to delineate, define, and accept our areas of ignorance.

Most Likely to Succeed quote

A quote from the introduction of “Most Likely to Succeed” by Toni Wagner and Ted Dintersmith. How long will it take before education systems realize that the old factory model of education is no longer working?

Level 1: Passive Learning

When people start learning a subject they are usually not sufficiently self-motivated to learn it on their own – but we hope they will reach that point eventually. Most inexperienced learners are passive. They wait for their teachers to lead the lesson, sitting in their seats listening to lectures or watching a movie or otherwise absorbing and consuming educational content. The focus in such classes is to complete individual assignments that usually involve only lower order thinking skills such as recall and identification. This is the level described in the quote above from Most Likely to Succeed by Toni Wagner and Ted Dintersmith.

At this level, teachers emphasize mastering the facts and basic concepts of a subject. Students are consumers of educational content, but do not interact with it or create new content. Common classroom activities include listening to lectures and taking notes or answering basic questions, watching a video or demonstration, completing worksheets, or reading a text. Student motivation is usually external, based on the desires of parents or teachers and the fear of negative consequences (poor grades, etc.).

Education at this level is all about efficiency but isn’t very effective, since less than 10% of what teachers share in lectures is retained by students beyond the next test. Evaluation is based on standards, not skills. There is always a need for students to learn facts and concepts, but it is better to provide engaging projects where the students will find out the facts on their own as a natural part of completing the project.

Level 2: Active Learning

At this phase, students start developing internal motivation as they engage and interact with content. Students are beginning to explore, but usually through activities that are fairly structured although more student centered than before. These activities are hands-on; students are doing and acting, not sitting and listening.

Common classroom activities would be “cook-book” style labs, with step-by-step instructions and pre-determined outcomes. Students begin to learn observation and inquiry skills, with some data collection in a controlled environment along with data analysis. Teachers still determine if the student has the “right” answer. They start to practice the 21st Century skills of collaboration, communication, and critical thinking. Unfortunately, most science classes stop at this level without moving beyond hands-on to the deepest level.

reasons for using inquiry

Inquiry-based learning shares many of the features of project or problem-based learning, in that it is student centered and empowers student voice and choice, allows a high level of engagement and meaningfulness as students take responsibility and ownership for their learning, and teaches resilience, grit, and perseverance.

Level 3: Creative and Innovative Learning

If the purpose of STEAM education is to teach students how to become scientists, technology experts, engineers, artists, and mathematicians then they must learn the final stages of inquiry: to ask and answer questions, to solve problems, or to design products. The purpose of science is to answer questions whereas engineering has the goal of solving problems through designing and testing prototypes. Both are creative endeavors as the result of learning is something new for society – new knowledge or new products.

In the Creative Classroom, the environment is completely open, without predigested data or predetermined conclusions. Students work on projects where they research a question important to them, develop a methodology, decide how to control variables, make observations, determine methods of analysis, and draw and communicate conclusions. At this level, students become innovators or inventors. They synthesize knowledge and apply it to themselves and teach others through writing blog posts, creating posters or infographics, presenting lessons and demonstrations, and filming and editing videos or other educational media. They become makers and programmers, building products of their own design. The students are creating and contributing to society by making new content, knowledge, and solutions.

Learning at this level is never forgotten but is difficult to evaluate with a multiple-choice test, as the focus is on skill mastery and competency instead of easily regurgitated facts. Overall, this deepest (and most fulfilling, motivational, and engaging) level is entirely student centered and driven, with instructors as mentors. Ultimately, once a student has practiced learning at this level, the teacher is no longer necessary; the students will continue to learn on their own, because they are now entirely internally motivated. These are the people that society will always need.

How This Impacts My Teaching:

As an educator, my goal is to move students toward Level 3 activities and projects. Where I succeed, the projects my students work on are meaningful to them, demand professional excellence, use authentic data, involve real-world applications, are open-ended, and are student-driven. The students are required to create, make, program, build, test, question, teach, and design. They are innovators and engineers; they are creative students.

To give some examples from previous blog posts on my two sites:

Rachmaninoff 430-630-1000-s

Representative color image of the Rachmaninoff Basin area of Mercury, created by my students using narrow band image data from the MESSENGER space probe at 430, 630, and 1000 nm. We stretched the color saturation and image contrast so that we could see differences between volcanic (yellow-orange) and impact (blue-violet) features.

My chemistry and STEAM students created an inquiry lab to study the variables involved in dyeing cloth, including the history, ancient processes, types of cloth, mordants (binders), types of dyes, and other factors. We also explored tie dyeing, ice dyeing, and batik and developed a collection of dyed swatches that we will turn into a school quilt. We also experimented with dyeing yarn with cochineal, indigo, rabbit brush, sandalwood, logwood, etc. and my wife crocheted a sweater from it.

2. My chemistry and STEAM students did a similar inquiry lab to test the variables involved in making iron-gall ink using modern equivalents. We studied the history and artistry of this type of ink (used by Sir Isaac Newton, Leonardo DaVinci, and many more) and tried to determine the ideal formula for making the blackest possible ink. We also created our own watercolor and ink pigments such as Prussian blue, etc. We used the inks/watercolors to make drawings and paintings of the history of chemistry.

3. My astronomy students used accurate data to build a 3D model of the nearby stars out to 13 light years. This lesson was featured in an article in The Science Teacher magazine, including a video of me describing the process.

4. My astronomy students created a video for the MIT BLOSSOMS project showing a lesson plan on how to measure the distance to nearby stars using trigonometric parallax. It is on the BLOSSOMS website and has been translated into Malay, Chinese, and other languages.

5. My earth science students learned how to use Mars MOLA 3D altitude data to create and print out 3D terrains of Mars.

6. My chemistry students created a 12-minute documentary (chocumentary?) on the history and process of making chocolate.

7. My 6th grade Creative Computing class built and animated a 3D model of the SOFIA aircraft prior to my flying on her as an Airborne Astronomy Ambassador.

Kasei_Valles-Mars-2

A 3D render of the Kasei Valles area of Mars, created by students as part of the Mars Exploration Student Data Team project. They learned how to download Mars MOLA data from the NASA PDS website and convert it into 3D models and animations, then created an interactive program on Mars Exploration which they presented at a student symposium at Arizona State University.

8. My science research class collected soil samples from the mining town of Eureka, Utah to see if a Superfund project had truly cleaned up the lead contamination in the soil.

9. My chemistry and media design students toured Novatek in south Provo, Utah and learned about the history and current process for making synthetic diamond drill bits. Another group videotaped a tour of a bronze casting foundry, while others took tours of a glass blowing workshop, a beryllium refinery, and a cement plant.

10. My astronomy students used infrared data from the WISE and Spitzer missions to determine if certain K-giant stars may be consuming their own planets. This was done as part of the NITARP program. They developed a poster of their findings and presented it at the American Astronomical Society conference in 2015 in Seattle.

11. My biology students build working models of the circulatory system, the lungs, the arm, and create stop motion animations of mitosis and meiosis. As I write this, they are learning the engineering design cycle by acting as biomechanical engineers to design and build artificial hands that must have fingers that move independently, an opposable thumb, can pick up small objects, make hand gestures, and grasp and pick up cups with varying amounts of water in them.

12. My computer science students, in order to learn the logic of game design, had to invent their own board games and build a prototype game board and pieces, write up the rules, and have the other teams play the game and make suggestions, then they made revisions. This was an application of the engineering design cycle.

13. My STEAM students designed and built a model of a future Mars colony using repurposed materials (junk), including space port, communications systems, agriculture and air recycling, power production, manufacturing, transportation, and living quarters. They presented this and other Mars related projects at the NASA Lunar and Planetary Science Conference in Houston.

These are just a small sampling of all the projects my students have done over the years. I have reported at greater length in this blog about these and other projects. My intent has always been to move students away from passive learning to active learning to inquiry/innovation. They often create models, build prototypes, collect data, or design a product and it is always open ended and student centered; even if I choose the topic of the project, they have a great deal of freedom to determine their approach and direction. There is never one right answer or a set “cookbook” series of steps, nor a focus on memorizing facts. They learn the facts they need as a natural consequence of learning about their project topics; by completing the project, they automatically demonstrate the required knowledge.

Mars Exploration main interface-s

My students designed, animated, and programmed this interface for their Mars Exploration project, then presented it at a student symposium at Arizona State University as part of the Mars Exploration Student Data Team program. They build 3D models and animations of Mars probes, such as the one of the MER rovers shown. In this interface, the Mars globe spins, and as the main buttons are rolled over, side menus slide out and space probes rotate in the window.

Some groups require considerable training and experience to get to this level of self-motivation and innovation, and some team building, communication, and creativity training may be required. Other groups move along more rapidly and have the motivation to jump right in. This means that managing such projects as a teacher can be challenging because every team is different. I find myself moving from being a teacher at the center of the classroom (a sage on a stage) where all students move along in a lock-step fashion to becoming a mentor or facilitator of learning (a guide on the side) as students move toward higher levels of engagement at their own pace and in their own way.

As classroom activities become more student-centered, I find it natural to tie in the Next Generation Science Standards. If I do an inquiry lab to test the variables that affect dyeing cloth, the answer is not known before nor the methodology. Students have to work out the scientific method or steps needed by asking the right questions and determining how to find the answers, or to design, build, and test a prototype product. Through this method they learn the science and engineering processes that are one dimension of the 3D standards.

Crosscutting concepts can also be explored more effectively through this method. Inquiry leads to observations, which should show patterns, processes, models, scale, proportion, and other such concepts, which are the second dimension of 3D science education.

This leaves the third dimension, which is to teach subject Core Concepts. This is where most of the misguided opposition to Project Based Learning comes from. Teachers feel that projects somehow take time away from “covering” all the standards. But if we want deep learning of the core concepts of a subject, we can’t expect students to learn them by using surface level teaching techniques that emphasize facts without going any deeper. If I do it right, I can involve many standards at once in the same project and not only meet but exceed the standards in all cases. I call this “standards overreach” and I will talk about this in more detail in my next post.

Element posters and virus models

Projects don’t have to be a elaborate and complex as the Mars project shown above. Here, my New HAven students have created models of viruses and mini-posters of chemical elements. The green plastic bottle to the left is a model of a human lung.

Read Full Post »

Magnet activity

Shannon and Kenzie demonstrate magnets

I’ve written before about my views on student engagement and involvement in education; that students learn best when they are most engaged and involved in the educational process (here’s a link to a previous post on the subject). This is all based on 20 years of observation that I am usually the person who learns the most in my own classroom, simply because as I prepare materials to present to my students, I have to learn them very thoroughly myself, and as I teach these materials, I am making a type of commitment to the concepts; staking my own reputation that what I am teaching is correct. The gist of my philosophy is that if I can get students to become teachers themselves and fully commit to the concepts they are teaching then those concepts will never be forgotten. You could compare this to the old often-repeated adage:

Feed a man a fish, and you feed him for a day. Teach him how to fish, and you feed him for a lifetime.

To which I would add: Train a man how to teach others how to fish, and you feed a whole village for eternity.

A number of years ago, while teaching at Juab High School in Nephi, Utah, I began a program to take my advanced physics and Chem II students to the Nephi Elementary School once per month to present lessons to the classes. I worked with the teachers there to come up with lessons that fit into their curricula but also could be easily demonstrated. My students had to practice the demonstration, write up a brief 20-minute lesson plan with a handout, and receive feedback from their peers, myself, and the elementary teachers.

Cael and his vacuum pump

Cael demonstrates his vacuum pump

It wound up being one of the most effective projects I ever developed. My students were always a bit nervous the first time, but after seeing how excited the elementary kids were, they caught the same enthusiasm and soon were asking me when our next visit would be. They also presented these mini-lessons at a back-to-school night at the end of the year for their parents and other students to see. It was a definite win-win activity; both the elementary students and my students benefited greatly and it was worth all the effort we put into it.

Since teaching at Juab High School my teaching assignments have not allowed me to continue this program, although at Mountainland Applied Technology College my multimedia students did participate in the Mars Exploration Student Data Team program and presented at a symposium at Arizona State University in 2004. My students also created a two-hour documentary on the history of AM radio in Utah that aired on KUED, Salt Lake’s PBS station, in 2007. You could say that they were teachers and content creators from these experiences.

Now that I am back at a high school teaching science, I have reinstated the students-as-teachers concept through what I am calling the Walden Elementary Science Demonstration Program. I’ve even written a small grant for the Air Force Association last week to support this. On Friday, Nov. 12, I took my astronomy students down to the elementary classrooms at Walden to present lessons. Just as at Juab Elementary all those years ago, my students picked a topic and a demonstration, practiced it, wrote up a script or lesson outline, and then presented in the classes. I videotaped parts of the presentations and took photos. The elementary students were excited, engaged, actively getting their hands on materials, asking questions, and participating. My students did extremely well for our first time. Here are some of the presentations that they did:

Lunar Crater Activity

Annette and Olivia demonstrate lunar cratering

Shannon and Kenzie presented the properties of magnets and did a demonstration of a gravity assist maneuver using neodymium magnets and steel shot to represent planets and a space probe (I once got two neodymium magnets stuck up my nose while presenting this same demonstration to a group of teachers at the Jet Propulsion Laboratory. It’s a long story . . . .) Shannon and Kenzie had the challenge of adapting their lesson to be understandable for kindergarten students and for 4-6 graders (they presented twice). They demonstrated some large industrial strength iron horseshoe magnets I’ve had all these years and the kids had fun trying to pull them apart.

Cael and Koplin taught about how difficult it is for humans to survive in space, and demonstrated the properties of a vacuum by blowing up marshmallows. Cael’s father helped him construct a homemade vacuum chamber out of a Bell canning jar and a hand pump (very ingenious, actually, as you can see in the photo). Students had fun pumping out the chamber, seeing the marshmallows expand, and then releasing the valve and seeing them suddenly shrink again.

Olivia and Annette demonstrated how the surface of the moon formed using the lunar cratering activity (dropping rocks into a pan of flour and cocoa powder). They also tied it into a map of the moon, and had the kindergarten students repeat back what they had learned to win a prize – a piece of rice krispy treats coated with frosting to look like the moon’s surface.

Inertial scale activity

Scotty and Colman demonstrate the inertial scale

Scotty and Colman taught inertia and momentum by demonstrating the properties of an inertial scale I made a few years ago. It’s basically a metal ruler with a film canister at the end clamped down on a table’s edge. The more heavy a rock you place in the canister, the slower the ruler will vibrate due to the rock’s momentum. They also demonstrated dominoes, yanking a piece of silk out from under an object, etc.

Mars site selection activity

Maxson teaches about Mars landing sites

Maxson talked about the surface of Mars and how hard it is to find a good landing place. His partner wasn’t able to attend that day (he had an activity in another class that went unexpectedly long), but Maxson was able to fill in for his missing partner by having the 4-6 graders look for possible landing sites on maps of Mars.

Alexi and Erika presented the scale of the solar system to 1-3 grade students, showing them various balls that represented the sizes of the sun, Jupiter, Earth, Mars, etc. They also showed GoogleEarth. Then they took the students outside and had them stand in positions of relative distances for the planets. I didn’t get a chance to go outside and photograph that part of the activity, but I heard from the teachers that it went very well.

Scale of the solar system

Alexi and Erika demonstrate planetary scales

For me, the best part of doing these presentations is at the end of class when all my students gather back in my classroom to report on how it went. I wish I had had my camera running. They were telling each other what went right and wrong, what the elementary students had said and done, and I knew at that moment I had achieved my real purpose: my students were excited about science, and this was an experience they will never forget. As for the concepts they had to learn in order to make their presentations, I think it’s safe to say they will never forget them, either. I uploaded the photos I had taken to my laptop and did a slideshow at the end of class so that they could all see what the other teams had done. At the end of the year, we’ll do a video presentation as well.  Not bad considering I hadn’t told them about this until two days before their presentations, so that they had only two days to choose and prepare their lessons. They did great! Now in December my chemistry students get their turn.

Read Full Post »

   For our last two entries I have written about the need and rationale for The Elements Unearthed project. In this post, I would like to present our third and final reasoning behind this project, journeying into the nebulous and contended realm of educational theory to present the conceptual underpinnings of our project.

 

   In the recent (Nov. 2008) issue of The Science Teacher, the editor, Steve Metz, commented on Project-Based Science instruction (PBS): “. . . learning is an active process and students learn most effectively when they are constructing a meaningful product.” He also said that “. . . individuals construct knowledge individually, through active and meaningful interactions with their environment, rather than by passively receiving transmitted information.”

 

   Student learning activities are often charted out on a continuum or dichotomy with Passive on the left and Active on the right. Such activities as taking notes, listening to lectures, and watching a video in class are passive whereas such activities as open-ended labs (inquiry labs) and research projects, simulations, and student presentations are active. I propose that this scale is only partially complete. Beyond hands-on or inquiry activities is a whole other level of student involvement in learning: students as creators, producing their own knowledge or making content for others. As such the spectrum would place Passive activities on the left as before, but now place Active learning in the middle and Creative activities on the right, where the student becomes responsible for creating material for and teaching knowledge to other students. Instead of being consumers of content or even interacters with content, students become the producers of new content. They become the teachers.

 

The Continuum of Constructivism Beyond Hands-On

The Continuum of Constructivism Beyond Hands-On

 

 

 

   In the diagram shown, certain educational models begin to fall into place when compared with this new scale of constructivism. On the left of the continuum, the teacher is the center of the classroom and dispenses knowledge with a focus on efficiency – pouring as many facts into the minds of the students as quickly as possible in assembly line fashion. As we move toward the middle, activities and assignments become more student-centered and involve the student actively, getting them out of their seats and into the lab or participating in a simulation. Instead of rote regurgitation of facts, student assignments become more open-ended and subjective, more imbued with meaning and interpretation; requiring evaluation and comparison on the part of the student. As we move beyond hands-on into the realm of student-created content, the student and the teacher reverse roles. The teacher becomes more of a coach or mentor, a facilitator of learning. This side of the continuum requires self-motivated students willing to dig for their own knowledge; having learned how to learn, they pursue their own lines of inquiry and even create their own experiments to uncover new knowledge. They ask questions and find answers, either through original experimentation or primary source historical research. They become scientists and teachers, training their peers and creating original content for fellow students and even for the general public. They now internalize their learning and own it; they won’t forget it or become uninterested or bored with it because they are fully engaged. Instead of writing a research paper that only the teacher will read, their work is actively critiqued and utilized by others. The focus now becomes quality and effectiveness of learning instead of efficiency.

 

   The effect of students creating their own content and knowledge is profound. Not only do students retain the knowledge they create longer (usually indefinitely) but the motivation and excitement of the students increases. As they see that what they are creating is meaningful and relevant, as they discover the scientist and historian within themselves, not only does their ownership of the knowledge increase but so does the quality and thoroughness of their work.

 

   I first discovered this effect by accident. As a first time teacher of chemistry at a small school in the Sierra Nevada Mountains called Tioga High School, I was presenting a unit on organic molecules and their naming conventions. Instead of lecturing on all the alkanes, alkenes, dienes, and so on I decided to let the students research this on their own and report their findings to the other students. This type of “jigsaw” activity can be useful as it puts responsibility on the students to find their own answers and learn from each other. I was also the computer teacher at this school, so I opened up the lab and had the students create their reports in the form of a Hypercard stack on the Mac Classics we had in the lab. They were required to present the information with graphics and also to create some kind of quiz or game based on their content that the other students would then take to demonstrate their knowledge. As students got into the project, I was amazed to see that instead of complaining about having to do research, they were actually asking me to open the computer lab during lunch so they could work on their Hypercard projects. They became very creative in how they presented their information but even more so on how they structured the quizzes; they wanted to do things that would be funny or surprising to their peers while also presenting accurate information. In the process, they truly learned the material. Their test scores were much higher on this unit than before.

 

   At other schools where I have taught I have instituted some form of student-created content made with the intent of teaching other students (instead of just the instructor). At Juab High School in central Utah, students in my chemistry and physics classes created demonstrations and mini-lesson plans on the chemical elements and principles of physics to present to each other for feedback, then perfect and present to students at two local elementary schools and to the public at a back-to-school science night. At Mountainland Applied Technology College, students have been required to look up tutorials on software packages such as Adobe Photoshop, practice them, write up their own lesson plan, and then present it to the other students. In each case student motivation and retention has been excellent. The only drawback is that such activities take more time than traditional rote learning so not as much content can be “covered.” But when the focus shifts from coverage to quality, I find that less is indeed more.

 

   Now I am not trying to say that the activities and types of assignments on the left are bad. There are times when a great deal of facts must be covered quickly and a lecture with note-taking is simply the best way of presenting the information. For students who are less self-motivated or less mature, the activities on the left and center are effective, and there are times when teachers need to have more control over the content and the direction of students. As students gain more experience and take more control of their own learning, they should naturally start moving toward the right side of the continuum.

 

   Even in the teaching profession we see this – teachers in training gain facts first in content area courseware, then go through various stages of methods courses and lesson plan development practice before presenting lessons to fellow teachers. They eventually move up to teaching a single class of students for a limited time, then move on to full scope student teaching for a whole semester under the direction of a mentor teacher, then finally gain their credential and full-time employment. If we expect our teachers to follow this process, then why not our students as well? They can become apprentices of knowledge, progressing to journeymen students who create their own content and conduct their own research, eventually progressing to masters who are now totally in charge of their own learning.

 

   This is what we propose for The Elements Unearthed Project. Student teams will progress from being researchers to scriptwriters to video editors, at each stage trained and mentored by experienced media professionals and local scientists and historians. Not only will they become producers of content, they will also learn to evaluate and present that content in an aesthetically pleasing and factually accurate way. Although the content they produce will be of benefit to many students and teachers worldwide, it is the student/community teams that will gain the most. Local museums will receive high quality media content that they can display in their museums and on the Internet. Local chemical plants and refineries will gain valuable public relations exposure by telling their stories to the wider community. Team members (students and mentor teachers) will gain video editing and scriptwriting skills, as well as the chance to do primary historical research. Communities will gain from increased public awareness of the history and environment of the town. In short, everyone benefits.

 

   It is our hope that you will support this project by becoming involved directly as a sponsoring organization (a refinery, chemical plant, or museum) or by creating a team of your own to document the history of your area. You can also contribute to this project financially and receive sponsorship credits in the final podcasts and on this blog. Next week we will discuss the timeline and phases of this project and more on how you can get involved.

Read Full Post »