Feeds:
Posts
Comments

Posts Tagged ‘student presentations’

Foam demonstration

David Black presenting foam demonstration

Yes, I know this is late. The new school year is about to start and I am only just finishing up the last school year. This post will describe the Grand Finale of the school year for my science classes, which was our First Annual Science Showcase at Walden School.

We had been working toward this all year, as you have seen from previous posts. Students in my astronomy and chemistry classes joined into small groups (2-3 students) and chose topics based on what interested them and what materials and equipment I had available. Then during first term, they conducted background research. My chemistry students created posters and several of them contributed posts to this blog. During second term, the teams condensed their research into a script for a presentation or mini-lesson on their topic which was to include explanation, background, and some type of demonstration or hands-on activity. The teams practiced and refined their scripts, then I divided the teams in half. Half of each class presented their demonstrations/lessons to their peers in class, and I had their fellow classmates fill out an evaluation form with Likert-style point scales and room for comments. The other half presented to our elementary classes and wrote evaluations on themselves. In astronomy, the students merely presented for the elementary classes once.

science night assignments

Assignments for Science Showcase

During third term in chemistry, the teams went over their evaluations and improved their scripts. I had them start to create Powerpoint slide shows or add YouTube videos to increase the depth of their presentations. Then the teams presented again – those that presented to their peers now presented to the elementary classes and vice versa. Evaluations were again filled out, with even more detail. I also wrote up my own detailed suggestions for each team.

copper group presenting

Copper group presenting at Science Showcase

Finally, fourth term, we made our final preparations and practiced and set up our Science Showcase on May 16. I also asked the astronomy students to return and reprise their presentations, and had my geology students help out. Since our school is small, many students presented twice (and got extra credit for it). We set up an invitation for the parents and had it e-mailed out to the whole school mailing list. It took a lot of preparation, and wouldn’t have been possible without the support of the Air Force Association Educator Grant, which helped to pay for materials and supplies that were used up each time we presented (like plastic cups, red cabbage, white glue, etc.).

Schedule for science night

Schedule for Science Showcase

We set up the evening to be in three classrooms and outside on the school’s back patio (for the dangerous or messy presentations). The teams were assigned carefully so that those who were doing more than one session could make it to each one. Some students also got credit for helping film the sessions, making sure the refreshments were done (homemade root beer and ice cream, which were actually presented at two sessions), acting as hosts for each room, etc. For four sessions we had four presentations going at the same time, or about 16 topics altogether.

Dry ice group

Dry ice group presenting at Science Showcase

It was a bit frustrating to get the students all there on time (an hour early) and a few things I wanted to do didn’t get done, but overall the night was a huge success. I had about 30 students involved, and there were about 40-50 other people who attended, some other students, some parents, some siblings. A few of the sessions were too short, and the student hosts in each room didn’t watch the clock well enough, so the schedule got a bit messed up by the end, and we had to take a break for refreshments. The homemade root beer (we already had dry ice) and ice cream (another presentation) went over well. Some of the sessions only had a few in the audience, others were packed.

Flame test abstract

The last session was done by Jerry and Karl on properties of the elements and how fireworks are made, and in addition to the methanol flame test, Karl had made his own sparklers. He’d looked up a recipe online, but I didn’t have all the exact ingredients, so we substituted and experimented for a few days and came up with a viable recipe, one that actually works better than commercial sparklers. It was nice to have a grand finale, so to speak.

Homemade sparkler

Homemade sparkler demonstrated at Science Showcase

We videotaped and photographed everything, and I am still trying to capture and compile the video. I have only two weeks left until school starts, and my goal is to put together a final 15 minute video of all our presentations for the year before school begins so that I can show it to my next classes and post it here.

Solid rocket booster

Toasting the Runt: A solid rocket booster

As an assessment of the evening, I didn’t have any kind of feedback forms, but based on overheard comments, feedback from parents and other teachers, and general excitement of my students, I’d say the evening was a great success. Everyone had fun, most of the presentations worked well, the students came through very well, and I saw some genuine learning and expertise displayed by my students. Certainly they have come to feel comfortable using lab equipment and presenting to their peers and others. What they presented they have now learned deeply and will never forget, long after stoichiometry and thermochemistry have faded away. For our first year doing this, we have set up a good foundation. There are things that can be improved, of course, and I hope to get the other science teachers involved this coming year. At least now my students know what to expect.

Homemade root beer

Homemade root beer

I hope to have several students display their science experiments, where they designed, observed, and analyzed their own data for science fairs. My one science fair student displayed his computer game project and it was well attended and received. Next year, as we are involved in authentic NASA research, we’ll have more students doing the real thing. But more on that next post.

Moon craters

Moon formation and evolution demonstration

Josh shows game

Demonstrating the "Salt the Slug" game

Silver group presenting

Read Full Post »

Blue gak

Blue gak, part of a student demonstration

Last December right before winter break, my chemistry students prepared demonstrations to present to each other and to the elementary classes here at Walden School. This was their first attempt at it, and they received evaluations from me and from their peers with suggestions on how to improve. Now we have just finished the second round of presentations, and each team has added new features and made improvements.

Green slime

Green Slime

I had each team improve their presentations in four areas: first, their presentation skills, such as speaking with good diction, showing enthusiasm, and having a smoothly scripted and rehearsed narrative. The second area was improving the visual appeal of their presentation by adding some sort of poster or handout that could be used as an activity for the audience while the team sets up. Some of the groups made posters, some made paper games such as word searches or worksheets. The third area to improve was to add a multimedia component, such as a powerpoint slide show, a video, or a game. The final area for improvement was to make their presentation more hands-on for the audience, such as having more audience participation, or some sort of kinesthetic activity, or turn the presentation into an inquiry-based lab.

Girl with pH samples

Girl with pH samples

The results were very good; all the presentations have improved. Their science content was already good, but is deeper and more engaging now. By adding slide shows, posters, games, activities, and participation, they have gotten their audiences much more involved and excited.

Here are some examples: One group presented on the properties and uses of silver, and their demonstration was how to untarnish silver. They not only had a good slide show, but created a kinesthetic activity where the elementary students linked arms to form first silver sulfide (tarnish) and aluminum, then reformed to create aluminum sulfide and pure silver. This demonstrated the idea of conservation of matter in chemical reactions.

Sofia activity

Sofia leads a kinesthetic activity

The cabbage pH group turned their presentation from a demonstration into an inquiry lab by pouring samples of many types of household chemicals and food (such as grapefruit juice) into small clear plastic cups, then having the elementary students predict whether the chemicals were acids or bases, then use the cabbage juice to prove their guesses.

Marni and kids

Testing the pH of household chemicals with cabbage juice

My favorite improvement was in the saltwater density group; they had some difficulty during their last presentation with not having practiced enough and having things not work out as planned. This time it went smoothly, and they even created a computer video game called Salt the Slug. Jess created the graphics and Josh did the programming. The purpose of the game is to use the trackpad of the computer to shake a salt shaker up and down, shaking out salt onto a slug that is crawling across the screen trying to steal food. If the player can kill the slug before it gets back to its home with the food, he or she wins. Yes, the concept sounds a a bit cruel but it taught the idea of osmosis and concentration of solutions and besides, the graphics were hilarious. The elementary students were jumping up and down for a chance to play, so the team had to ask them some review questions to decide who would get a chance to try the game out.

Slug game

"Salt the Slug" game by Jess and Josh

Josh has become an excellent game programmer and created another game, which he has been working on for a year, where the player places towers that then shoot into a maze to repel invaders. He presented this game at the Charter School Science Fair for all of central Utah, and now has qualified to go on to the regional science fair at BYU in late March. I was a judge at the fair last week, and it was amazing to see the caliber of some of the projects.

Josh at science fair

Josh at the Charter School District Science Fair, Feb. 24.

One of my favorite things about doing these presentations is that many of my high school students have younger siblings in the elementary classes; what better way for my students to show off what they’ve learned, and how they can do science, than in front of their younger brothers and sisters? Dallas, one of the students in the group that demonstrated gunpowder had his little sister in the class. They kidded each other a lot, and Dallas had to tell her, “Don’t get sarcastic with me, I taught you sarcasm!” This group also included a nice demonstration of the “toast the runt” reaction, where potassium chlorate is heated to start it decomposing and giving off oxygen, then a runt candy is rolled down the test tube as the fuel source, resulting in a stationary solid rocket motor.

Toast the runt

Toast the Runt: A Solid Rocket Engine

We had to reform some of the groups, since a few students had switched sections at the semester, but the same presentations continued. Those teams that presented to their peers last time presented to the elementary classes this time, and vice versa. Each team has now presented twice and received feedback. Now they will present one more time at the end of the year at our Mad Science Night, where their parents and siblings are invited and we will take over four classrooms and run simultaneous sessions. It will be a lot of fun, and their presentations will be amazing.

Carbon dioxide and magnesium

Burning magnesium in carbon dioxide gas

Meanwhile, it has been quite a bit of time since my last post. I haven’t been ignoring it; rather, I’ve been so busy teaching, grading, entering competitions (such as the Explore Mars competition I mentioned previously), creating some video projects on the side for clients, presenting at the Utah Science Teachers Association conference (the Mars lessons again), and preparing for my trip to the NSTA conference next week that I simply haven’t had a chance to do many blogs. However, I have quite a backlog of student written blog posts that I will be adding over the next week, then posting each day from San Francisco, so you’ll see quite a few posts this month.

Read Full Post »

Gay eyeballs

Making gak eyeballs at Walden School

This last week was our final week of Fall Semester at Walden School, and for their final test my chemistry students planned, practiced, and presented chemistry demonstrations to their peers and to Walden’s elementary classes. Altogether five groups of students presented to the elementary school on Wednesday, Dec. 15 and the rest of the student teams presented on Friday, Dec. 17.

I’ve discussed my rationale for doing this in previous posts: that this is an excellent method for generating excitement about STEM in elementary students as they see their older siblings and high school students working with and presenting science. Certainly the younger students were very excited and attentive; they were eager to participate and asked good questions.

Raising hands

Students at Walden School participating in chemistry demonstrations

For me, though, the real reason for doing anything in my classes is always how it will benefit my students. Taking 3-4 days out of our curriculum to practice and present these demonstrations is hard to justify unless it has strong pedagogical advantages. The justification is this: as my students write up their demonstration scripts and outlines, as they practice talking about the science they are presenting, and as they prepare to answer questions from the audience they are thoroughly learning the chemistry behind their demonstrations. They are going beyond hands-on labs to share what they have learned, and that learning will be indelible.

Karlie and Sofia

Karlie and Sofia demonstrate hand warmers

The topics of the demonstrations had to related to the individual element/materials research project of one of the group members, which they are continuing to work on. Here’s what was presented:

Sofia, Karlie, and Jerry demonstrated the principles behind hand warmers by showing the rapid crystallization of sodium thiosulfate crystals that had been heated and then cooled down. They also talked about crystals in general.

Making gak

Mari and Casey help students make gak

Ryan and Casey, with help from Chelise, Lindsey, and Mari, demonstrated how to make gak (a polymer made out of white glue and borax powder). This is an old standby demonstration, and the kids really enjoyed it.

Copper demonstration group

Genny, Rachel, Jared, and Morgan demonstrate copper's properties

Genny, Rachel, Morgan, and Jared demonstrated aspects of copper chemistry. They handed around samples of copper ore (Rachel’s uncle is an engineer at Rio Tinto’s Bingham Canyon Mine in Utah) and showed a methanol version of a flame test (including copper salts). Jared demonstrated the alchemist’s dream reaction: turning copper into gold (actually brass).

Kinesthetic activity

Sid and Sam use a kinesthetic activity to demonstrate magnetic induction

Sam and Sid, with help from Josh, presented the idea of magnetic induction and discussed how modern electrical generators work. Sam actually built her own alternator and induction coil, and Sid presented on his research about the use of wind power to generate electricity. They also created a fun kinesthetic activity to show induction.

Burning magnesium

Karl and Nicona demonstrate burning magnesium

Karl, Nicona, and Tanner presented on the properties of the elements; they did a flame test as well, and demonstrated what magnesium ribbon looks like when burned and how fireworks get their colors. They also had sparklers for each of the students to try out.

Cabbage pH

Sonora, Dallas, and Morgan demonstrate cabbage pH

In class on Friday, the other groups presented their demonstrations. Sonora, Morgan, and Dallas presented the red cabbage pH demonstration that is one of my favorites.

Untarnishing silver

Mari and Holly demonstrate how to un-tarnish silverware

Courtney, Holly, and Mari showed how to untarnish silver using baking soda and aluminum foil. They even included a correctly balanced chemical equation, although we won’t be learning about those until we return in January.

Dry ice group

Libby, Lindsey, and Chelise demonstrate the properties of carbon dioxide

Chelise, Lindsey, and Libby presented the properties of carbon dioxide gas and dry ice. They showed how regular matches go out in carbon dioxide, but that magnesium burns even brighter when placed in carbon dioxide.

Olivia and Jace

Jace and Olivia explain the ingredients of gunpowder

Jace and Olivia talked about gunpowder, how it is made, and why it is dangerous. Jace has experience working with black powder (he has his own muzzle loader – this is Utah, after all) and he created some raw gunpowder, which he burn outside. They also demonstrated the “fire writing” demonstration of drawing on a piece of paper with a saturated solution of potassium nitrate, then touching a wooden splint to the edges of the writing to see it burn letters through the paper.

Josh and Jess

Josh and Jess demonstrate the principle of density with salt solutions

Josh and Jess presented on salt solutions and how they can be used to determine the density of objects. They showed how an egg will sink in pure water but will float in salt water.

We also videotaped as much of the presentations as we could and took quite a few photos; those students that weren’t helping present helped with the photography.

Burning gunpowder

Burning gunpowder

When their demonstrations were done on Wednesday and Friday, my students were excited about what they had done and the feedback they’d gotten from the younger students. They still have to learn some showmanship and presentation skills (which we’ll continue to work on), but based on what I saw and what the elementary teachers reported, the science content was excellent. They and their peers filled out evaluation forms (and I will as well) so that they can improve on their presentations for the next round in January.

Golden pennies

Golden pennies

It was a lot of work to prepare for this. Now my lab room is a mess and I’ll need to take a day during Christmas break to clean up and re-organize (and I think I forgot to throw out the leftover red cabbage pulp that’s in my trash can, so I’d better go clean up tomorrow). But despite the work and the lost time, I’d say these demonstrations were well worth it. As we go through the second semester, the students will present at least twice more, including a final time at a back-to-school night for their parents. We’ll polish the delivery, add more science explanations, create slide shows and videos to supplement their demonstrations, and by the end of the year these will be incredibly well done.

Read Full Post »

Possible game interface for iPad

Mineral Identification App for iPad

Since Apple, Inc. announced the release of the iPad two weeks ago I’ve been reading a lot of comments and blogs about how useful this device might be in education. Some excellent posts are being written on the possibilities. Here’s one: http://www.edutechnophobia.com/2010/02/six-ways-the-ipad-will-transform-education/ I haven’t weighed in on the issue myself yet because I’ve been so busy preparing the first few podcast episodes that I keep promising for this site. But more on them later. As for the iPad, providing they add some capabilities such as USB, Flash support, and multi-tasking, I believe it will be a platform of great benefit to science teachers in the following ways:

1 – Replacing expensive textbooks: All of us who have been classroom teachers know that printed textbooks have become outrageously expensive and in technology and the sciences they are outdated before they even go to print. Yet having a handy source of general information on a subject that is grade-level appropriate and tied to national standards and comes complete with problem sets and review questions, test banks, on-line resources, and all the other associated items is a very valuable resource for teachers. If all of this can be ported to an e-book format and read on the iPad (with added interactive and multimedia touches) then the purchase of an iPad for each student becomes truly economically feasible for schools, especially when you factor in that it also replaces most needs for student computers and graphing calculators and merges all these technologies into one device.

2- On-line Testing: iPads have the capability of simplifying student assessment by making it readily and cheaply available at any time on-line. Teachers, with appropriate application support, will be able to assign and write quizzes, tests (both unit and end-of-year state tests), and other assessment tools which students can answer directly on the iPad and receive instantaneous feedback. Many states, including Utah where I am located, are moving their end-of-year testing away from pencil-and-paper multiple choice tests to on-line testing that can incorporate many forms of questions and be skills-based and well as knowledge-based. For example, a chemistry test could incorporate a virtual lab situation as a test question. Which brings up usage 3:

Interactive periodic table

Interactive Periodic Table App

3 – Virtual Science Labs: With the accelerometer and gestural controls of the iPad, science teachers and curriculum developers can program virtual labs that mimic a student actually picking up and weighing reagents for a chemical reaction, calculating the atomic weights and stoichiometric ratios, observing and analyzing the results (say of a virtual pH titration), and comparing student answers with accepted answers. Although this can’t take the place of hands-on science labs, it could certainly help to prepare the students for the real experience and help remediate students who miss the day of the lab, and reduce costs and disposal concerns. Virtual labs could also be created for Earth science (a virtual mineral field test kit), meteorology (viewing cloud cover, barometric, temperature, relative humidity, and other data and then predicting the weather), physics (lots of possibilities here), and so on.

4 – Student Collaboration: This is my big area right now – getting students to collaborate with each other to discover knowledge and synthesize it by creating their own content for the use of other students, such as this Elements Unearthed project to develop student-created podcasts of history and usage of the chemical elements. Imagine a group of students taking iPads on a field trip to a local watershed to record measurements of the water and soil, plant and animal life, pollutants, etc. and recording all of this data tagged with GPS data, then uploading it to the Internet and making it available to students worldwide. The iPad therefore becomes a remarkable enabling tool for citizen science. Imagine these same students using a wiki page to collaborate on writing up their results, or Google docs, or even sharing an iPad as a group to write up their findings in Pages and as a Keynote presentation, with supporting spreadsheets from Numbers. I have seen some amazing things done in classrooms through my work with NASA and my frequent attendance at science and technology teacher conferences using technologies that are far less capable than the iPad (including PDAs, GPS devices, etc.). Given teacher creativity, the appropriate types of applications, and an enabling technology like the iPad, and the educational possibilities are endless.

5 – iPads as Game Platforms: Games in education? This scares a lot of teachers, but it doesn’t have to. Just talk to the educational people at Apple, Micrsoft, and Sun Microsystems (to name a few) – and I have talked to them – and you’ll be amazed at what’s coming and how it can engage students in education through doing something that’s intrinsically fun. Education doesn’t have to be boring – in fact, it’s much more effective if it is fun. Now we just need to have the imagination to create the educational games and content. I have a few ideas, and I’m trying to talk to some software developers about some apps that would be ideal for the iPad and would help teachers to teach and review concepts in chemistry, physics, and other sciences. My media design students were assigned, as part of their learning of Adobe Director and Lingo programming, to design, create, build, and program a game on such topics as Mars exploration or the history of AM radio. They were simple yet powerful (and fun) games that could easily be ported to the iPad and used by other students. Imagine if we have students create iPad apps for other students . . . now that would be powerful learning, for both the creators and users.

I have much more to say on these issues, and others are already saying many of the same things. I am attaching a .pdf file with more complete examples here:

iPads_in_Science_Education

Meanwhile, the podcast episodes are still coming – I have prepared the full 45-minute version of Dr. Scerri’s interview on the history of the periodic table, which is now ready to export, and will begin editing it according to the scripts I’ve worked out into two 15-minute videos with some great images and animations to go with them (all ready to go). The three episodes on Greek matter theories and two on beryllium mining/refining are also coming but will take more time. I need to have at least 5-6 episodes complete and available by the time I present at the National Science Teachers Association conference in Philadelphia in March.

Read Full Post »