Feeds:
Posts
Comments

Archive for June, 2010

This morning I accepted a job offer to teach full-time at Walden School in Provo, Utah. (here is their website: Walden School Website). I will be teaching a combination of chemistry, earth science, and multimedia courses at the high school level. Walden is a small charter school that follows the Montessori philosophy of providing a rich learning environment and letting students have a large say in the direction and content of their education. This happens to coincide very well with my own philosophy, which I have stated here before, that science classrooms need to go beyond hands-on learning and teach students how to be creative contributors to their own education, through building their own science content or conducting their own experiments.

Materials for Mars 3D activity

Materials for the Mars 3D activity

In fact, the fit for me is so good that if I had sat down and designed the perfect situation for what and how I like to teach, it would be very similar to what Walden School has to offer. And it will be ideal for The Elements Unearthed Project. It will provide a base of operations, so to speak, from which to apply for grants and gain support as well as a group of dedicated, creative students to work with. Teaching chemistry and earth science in addition to the multimedia I’ve taught for the last ten years will also allow me to cross-pollinate the classes so that students can do diagrams, animations, and videos for their multimedia class but also get credit in chemistry or earth science. This is the way project-based-learning (CBL) can be more efficient as well as more effective.

I’ve struggled this last year since returning from my fellowship at the Chemical Heritage Foundation to make financial ends meet by creating Business Profile Videos for clients. The economy being the way it is, all the businesses we’ve contacted love the idea of a YouTube video advertising their products or ideas, but hardly anyone can afford to pay what the videos are actually worth. So for the last two months I’ve been searching for full-time and part-time jobs; it takes a great load off my mind to know I will have a regular income. Although my days will now be spent teaching, I think the overall pacing of the project can increase; I no longer will have to spend all my evenings working on business videos and can devote almost as much time as now to the video episodes I’ve already filmed.

It will also be great to get back to science teaching. I’ve missed it, and I’m looking forward to dusting off and updating some of the great lesson ideas and activities I’ve learned from NASA and elsewhere. I can bring back the Elementary Science Tutorial Program I began at Juab High School so many years ago. Now my students can build the 3D model of the nearby stars I developed for my astronomy classes at Provo Canyon School. Now the Mars 3D project I developed at MATC can be shared between multimedia and earth science classes. Now The Elements Unearthed Project will be able to draw on students from multiple disciplines in a school that believes in student creativity, project-based teaching, and expeditionary learning.

Table top star model

Table-top 3D model of the nearby stars.

Instead of the factory model, one-size-fits-all style that is killing our public high schools, where subjects are fragmented and divorced from each other, I believe in teaching holistically and individually and expecting students to achieve highly creative work. Now I’m going to put this philosophy to the test.

Read Full Post »

The second part of the video on beryllium is now finished. You can watch it here:

This video has literally been 2 1/2 years in the making; my students Amy Zirbes and Nathan Jane videotaped our interview with subject expert Phil Sabey, the Manager of Technology and Quality at the Delta mill, in NOvember, 2007. This video discusses the history of mining beryllium at the mine site in the Spor Mountains of western Utah, including how the bertrandite deposit was discovered, and the land rush that occurred as a result (including an incident involving Maxie Anderson, who was head of Ranchers and the general counsel for Anaconda. Maxie Anderson went on to be one of three men to first cross the Atlantic in a helium balloon in 1978). This video also shows how bertrandite it is mined today by Brush Engineered Materials using open pit mines, then transported and processed at the concentration plant near Delta, Utah. The concentrated beryllium hydroxide is then shipped by rail to Elmore, Ohio for final refining into beryllium metal, alloys, and ceramics products. This episode also discusses Chronic Beryllium Disease, the main health hazard of refining or working with beryllium.

Chronic Beryllium Disease:

Beryllium dust, when in the air in concentrations of greater than 2 micrograms per cubic meter, gets inhaled and irritates the lung alveoli. The body treats it as an invading body, and sends white blood cells which surround the beryllium particle and form small granules called granulomas in the lungs. At this point, a person is said to have sub-clinical CBD or is “sensitized” to beryllium. Most people who are sensitized do not develop clinical CBD, but in about 2-5% of sensitized people, the immune system overreacts and the granulomas build up to where the lungs become stiff and respiratory function is impaired, leading to symptoms similar to pneumonia. There is no cure once CBD has set in, and the eventual result is painful death.

Before the effects of beryllium dust were known, a high number of workers in the beryllium industry were getting sick, especially in certain plants such as the old Brush Wellman plant in Lorain, Ohio. Beryllium in its ores (beryl crystals and bertrandite) is tightly bound to the crystal lattice and is therefore harmless. But refining bertrandite or beryl means that the beryllium is physically and chemically separated from the crystal, resulting in fine beryllium particles getting into the air unless precautions are taken. The effects of beryllium disease were well enough known by the mid-1960s that when the Delta concentration plant was built, safeguards were put in place that reduce beryllium dust to under 0.2 micrograms per cubic meter of air, or less than 10% of the maximum safety levels. Workers also wear respiratory equipment such as facemasks with filters to prevent even that level of dust from entering their lungs. There has not been any incident of chronic beryllium disease in the workers at the Delta plant.

Final beryllium metal, alloys, and ceramics are also fairly safe as the beryllium is part of the metal and not airborne. The danger occurs when these materials are cut, machined, or milled, which allows beryllium particles to get into the air where they can be inhaled. The only way to cure chronic beryllium disease is to avoid it in the first place by preventing beryllium dust from entering the air. Special precautions must therefore be taken in any business that handles beryllium. OSHA has been studying CBD and is likely to be coming out with new and even stricter standards soon.

Read Full Post »

Replacing topsoil Eureka Utah

Replacing topsoil in Eureka, Utah

On my visit to the area around Eureka, Utah last Friday, June 4, I not only wanted to visit Mammoth and Silver City, but to also document the efforts by the Environmental Protection Agency to clean up the town. I had traveled through Eureka a few days before on Memorial Day and noticed that the lawn and soil around the LDS chapel in Eureka was being dug up to a depth of about 18 inches. On Friday, crews were in the process of bringing in new soil in dump trucks and spreading it over a layer of black plastic where the lawns used to be. Normally I wouldn’t have noticed it much – just chalked it up to them putting in a new sprinkler system or something similar. But I knew differently. This was the latest site in an ongoing process to replace the topsoil throughout the entire town, which is a huge undertaking. All the old mine sites throughout the district have left a legacy of environmental contamination and pose a danger to careless explorers who try to enter mine shafts or tunnels or ruins.

Ore dump at Dividend

Ore dump at Dividend, Utah

When silver ore was discovered in the East Tintic Mountains by George Rush in 1869, it ignited a stampede of mining claims that spread throughout these mountains. New deposits were soon located and claimed, and the ore was assayed to be rich in silver, gold, lead, zinc, copper, and other minerals, usually in the form of metal sulfides. The most level sites near the mines quickly grew into the towns of Eureka, Mammoth, Silver City, Diamond, Knightsville, Dividend, etc. These towns were usually as close to the mines as possible so the miners didn’t have far to walk, so that miner’s houses and the mine buildings, hoists, smelters, railroad depots, and city businesses all competed for space in the narrow canyons. Tailings dumps of discarded minerals and slag from the smelters covered the hillsides around and above the town. Dust from these piles was blown by the frequent winds (this is western Utah, after all) and blanketed the whole town. Nobody thought much of it at the time. It was all just part of life in a mining town. But the entire topsoil was contaminated with lead and other metals down to about two feet under the surface.

Limestone rip-rap in Eureka

Limestone rip-rap covering a slope in Eureka, Utah

Downtown Eureka with limestone rocks

Clean-up operations near downtown Eureka, Utah

Today, the EPA has identified the area around Eureka as a SuperFund site, spending millions of federal dollars to clean up the contamination.  One by one, the yards of the residents and businesses are being dug up and the soil replaced, brought in from a staging area east of town. To prevent the tailings piles from blowing more toxic dust around the town, broken limestone rocks called rip-rap are being hauled in from a nearby quarry and are carefully placed to cover over the tailings piles to prevent further erosion by wind and water.

Mine dump in Tintic Mts.

Mine dump in East Tintic Mtns.

The work is progressing throughout Eureka, but the entire mining district has the same problem. Recent exploratory work has dug up the tailings piles in Silver City again, leaving the yellowish sulfides once again exposed to erosion. Many of the mine sites in the hills are owned by small-time private owners who keep the mines open on an occasional basis. They don’t have the resources to prevent the erosion of their tailings piles, and much of the East Tintic Mountains is contaminated just as Eureka itself is.

Old mine shaft

Abandoned mine shaft at Dividend, Utah

Another problem in the area is the many abandoned mine tunnels and shafts. Mines today are required to provide reclamation funds before the mine can even open, but it wasn’t an issue in the 1800s and early 1900s when most of these mines were active. The owners took the ore from the hills, then left all the scars, holes, pits, slag, tailings, and buildings behind when the ore ran out and their companies closed. Now these ruins are a hazard to casual explorers; every year or two someone dies falling down an abandoned mine shaft in Utah. The state has begun a program to close off these mines; to place grates or metal doors in the tunnels and shafts or to blast the entrances closed. Over 8000 mine sites have been closed off throughout the state through this program, but many, many more remain to be done.

Knight Smelter at Silver City

Ruins of the Knight Smelter at Silver City, Utah

Smelting or concentrating the ore brought its own environmental problems. Jesse Knight, the silver magnate that started Knightsville just southeast of Eureka, also built a smelter at Silver City in the early 1900s that operated for about eight years. The foundations of this smelter still remain, as do residual chemicals used to concentrate the ore, including mercury. When I visited the site on Friday, I found a man and his two young girls exploring the site. I suggested that he wash off his girls’ hands and shoes carefully once they were done because the whole site is contaminated with mercury (June McNulty, who runs the Tintic Mining Museum in Eureka, told me that he used to play with pools of liquid mercury metal that would seep into pockets around the smelter).

Knight Smelter

Remains of the Knight Smelter at Silver City, Utah

Right to the south of the old smelter lies a large heap of grayish tailings, now slowing growing a crown of weeds and grass. All the tailings left from the Knight mill were scooped up in the 1980s and placed on a pad with drainage pipes running through the pile, then a solution of cyanide was pumped and sprayed over the pile, leaching its way down through the tailings and chelating with the remaining gold and silver. The ore from these mines has been worked and reworked to get every last fraction of value out of it. But now the pile has been left just like all the other piles around, but with the addition of cyanide. I don’t know if steps have been taken to reclaim the pile, but I wouldn’t want to walk around on it.

Leaching pile at Silver City

Cyanide leaching pile at Silver City, Utah

The efforts to clean up these environmental messes is necessary, but it does come at a cost beyond just money. To clean up the town and make it safe to live in, its essential history and character has been changed.  The heavy equipment moving in limestone and soil has shaken apart a number of fragile historical structures, including buildings, homes, and headframes. Where there were colorful tailings piles slowly returning to nature, there are now carefully constructed fresh piles of gray limestone rocks, an ideal hideout and breeding ground for rattlesnakes (no joke here – I ran over one in my minivan as I was driving up the road to Mammoth). Eureka doesn’t look the same as it did ten years ago.

One can argue that Eureka must be dynamic and capable of changing. It’s not a museum but a living town, and change is part of life. But the historian in me hates to see history destroyed in the process. That is one of the main reasons I’ve started the Elements Unearthed Project and have traveled to Eureka several times in the last few years with my cameras and equipment; as the EPA clean up progresses, the town is changing and I want to preserve what can be preserved of the history before it’s gone forever.

Tailings piles at Silver City

Erosion of tailings piles at Silver City, Utah

The beryllium video second half is progressing well. I’ve decided to do the three episodes on the TIntic Mining Districts next instead of blown glass because It’s fresh on my mind and I now have all the footage and photos I’ll need. My goal is to get the beryllium video done and uploaded by the end of this week, then the Tintic videos by mid-July. Then I’ll start hitting the streets looking for financial sponsorship to continue this project.

Read Full Post »

Loading chute at Dividend Utah

Ruins at Dividend, Utah

The last few weeks I’ve had to neglect the Elements Unearthed project in order to finish a client video that had a tight deadline. It was uploaded to YouTube Thursday night, so I now have a little bit of a breather before the next project and am back at work on Part 2 of the beryllium video. Winter has finally decided to let go (after one last gasp – we had a snowstorm here just two weeks ago), and already the early summer heat is drying out the cheat grass and turning it a brownish-purple color on the lower south-facing slopes. I decided now was the time to do some exploring and photography while the grass is still green in the mountains.

Belt wheels and Mt. Nebo

Belt Wheels and Mt. Nebo

Over the last two years I’ve visited the Tintic Mining District several times with students and my own children and have collected a considerable amount of photos and video clips, including a tour of the Tintic Mining Museum and an interview with June McNulty, who runs the museum with his wife. But there were several places in the district that I hadn’t visited, including Mammoth and Silver City. So yesterday (Friday, June 4) I packed up the cameras and headed for the hills.

Glory hole at Dividend

Glory hole at Dividend, Utah

Change room stove at Dividend

Change room and stove at Dividend, Utah

I stopped first in the hills above Burgin, the site of the town of Dividend, so called because the mine paid out fairly decent dividends to the miners compared with other mines in the district. I decided to climb up the hill further than before, toward the two large rusty tanks that can be seen from the road. I was surprised to find much more there than I had known about before, including the ruins of miner’s houses (some semi-wild purple irises and lilacs were still alive and blooming). A processing plant once existed here, and the ground is covered with yellowish-stained rocks and pieces of slag and everything smells of sulfides. One ruin 2/3 up the hill still has an old rusted stove for keeping the miners warm in what was probably the change room – the mine portal itself is just above the room, and there are even a few remains of timecards used to clock in and out of the mine. The few I looked at were dated from 1971, which was about the time that the mine at Dividend finally closed down. Mining continued, periodically, further down the slope at Burgin. Almost forty years of weather has taken its toll; all the roofs and any other wooden structures have long since rotted away, leaving old, dry fragments of boards with rusted nails sticking out littering the ground. Most of the equipment is gone, taken by looters and souvenir hunters, but enough of the foundations and structures remain that one can imagine what Dividend looked like in its heyday.

Wild irises at Dividend

Wild irises at Dividend, Utah

The road past Dividend is off the main path of Highway 6. It’s a good road, well maintained and asphalted but not much visited. I only saw two other cars and a motorcycle during the four hours I spent exploring along the road. The East Tintic Mountains between Dividend and Eureka are dotted with old mining ruins and tailings piles, with dirt roads leading off frequently up every side canyon and ridgeline. Most of the area is posted No Trespassing, so I limited myself to taking photos from the main road. It is still late spring up there; the maple trees in the canyons have only just gotten their leaves, and wildflowers including mountain lupine and Indian paintbrush cover the hillsides.

Indian paintbrush

Indian paintbrush near Eureka, Utah

Blue Lupine

Blue Lupine near Eureka, Utah

I traveled through Eureka and saw the continuing cleanup efforts there (more on this in my next post) and drove on to the town of Mammoth. Located in a side box canyon just to the south of Eureka, this was one of the richest areas of the Tintic Mining District. The mines are located ringing the valley – many long since abandoned but several showing recent work. With prices for gold and silver high right now, much exploration is underway to re-work the old claims and tailings piles and to do new exploratory drilling. Again, most of the area is posted and is private property; I limited myself to the main streets of Mammoth to photograph the old buildings and mine dumps.

Mine at Mammoth Utah

Mine at Mammoth, Utah

At one time, when the processing plant was in full operation in the early 1900s, Mammoth boasted a population of about 2000. The people lived in the upper eastern portion of the canyon (Upper Mammoth) while the mill was at the mouth of the canyon lower down the slope (called Robinson after the mill’s foreman and later Lower Mammoth). Once the town was incorporated, public works such as churches and even a hospital (rare for a mining town) were built in the middle, or Midtown. In the early 1930s, my father used to visit his first cousin Ralph Larsen, whose family lived in Mammoth. During the winter the road leading up to town would be covered in packed snow, and the two of them would ride their sleds from Upper Mammoth all the way down to Highway 6, almost two miles, without ever stopping. Then they’d have to wait for someone to give them a lift back to the top.

Miner's shack in Mammoth Utah

Miner's Shack in Mammoth, Utah

Even though the mines had all closed by the 1950s, Mammoth somehow escaped the fate of most boom-and-bust mining towns; it never completely died. A few people hung on. Over the last ten years, since I last drove up here, it even appears to have grown in population. More houses have been fixed up and are occupied than before, and it is becoming an artistic community of sorts. Renewed interest in mining has also given the town a boost.

Lizard

Lizard in the ruins at Dividend, Utah

After Mammoth, I visited the old Jesse Knight smelter at Silver City and drove up the canyon there, but I’ll leave that for next time.

Read Full Post »