Feeds:
Posts
Comments

Posts Tagged ‘empedocles’

A 3D model of the Temple of Artemis at Ephesus, where Heraclitus lived. This image was modeled by Cameron Larson.

A 3D model of the Temple of Artemis at Ephesus, where Heraclitus lived. This image was modeled by Cameron Larson.

During the summer of 2009, I fulfilled a research fellowship at the Chemical Heritage Foundation in Philadelphia. I’ve previously written about my experiences there in this blog. One of the major areas I researched was the history of Greek philosophies regarding matter, fundamental materials, and the nature of reality. I wrote a script and created various animations to use for a three-part video about the philosophers and their theories. Over the next year, in between working on other projects, I recorded narration and put together timeline sequences in my video software for the three segments. But there the project stalled out, because all I had was my own voice talking with B-roll footage over the top. It was too boring, even for me. I needed to interview an expert to provide primary footage, using my narration only to stitch it all together. But I was back in Utah by then with no available experts around that I knew of.

3D model of Aristotle created using Make Human for the head, Sculptris for the hair and beard, and Bryce for the final render.

3D model of Aristotle created using Make Human for the head, Sculptris for the hair and beard, and Bryce for the final render.

During the summer of 2014, I fulfilled a Research Experience for Teachers in astronomy at Brigham Young University, as I have described in my other blog (http://spacedoutclass.com). While talking with Dr. Eric Hintz, my research advisor, he mentioned a paper he had written with a BYU philosophy professor named Daniel Graham. It regarded a Greek philosopher named Aristarchus, who calculated the size of the Moon based on the extent of a solar eclipse. I realized that I had found my expert literally right in my back yard.

I e-mailed Dr. Graham and he consented to talk with me, and we spent a fascinating 90 minutes discussing the various Greek matter theories and philosophers. He agreed to allow my students and I to videotape him answering our questions, and even gave me a book he had edited on the philosophies of the pre-Socratics.

3D image of Empedocles. Of course, we have no idea what they really looked like.

3D image of Empedocles. Of course, we have no idea what they really looked like.

In my next post, I’ll describe this interview and provide a transcript. Before he came to our school, my students needed to prepare for his interview. I introduced the Greek matter theories as the first of the three threads that led to modern chemistry (I’ve written about these threads before at this post: https://elementsunearthed.com/2009/07/31/three-threads-to-chemistry/ ). Students were assigned individual philosophers and asked to become familiar with their lives and theories, then create a series of questions that they could ask of Dr. Graham. I looked over their questions, made suggestions, and had students revise them so that they wouldn’t be redundant. I sent the list to Dr. Graham to review before his interview.

3D image of Heraclitus. He is often shown as the Weeping Philosopher, saddened by the folly and impermanence of the world.

3D image of Heraclitus. He is often shown as the Weeping Philosopher, saddened by the folly and impermanence of the world.

Meanwhile, my 3D modeling students were learning how to use basic character design software such as Sculptris by Pixologic. I had them use illustrations and sculptures of the philosophers to create torsos in 3D. We also used a new program I found called Make Human, which allowed a basic human figure to be morphed into whatever shape we wanted. The students used Make Human to create the basic head, then imported it into Sculptris to form the hair and beard around it, then took the pieces into Daz3D Bryce for final assembly, texturing, and rendering. Our purpose was to create a series of images and animations to use as B-roll in the final videos. We also hoped to add morph targets and bones and animate the heads talking through quotes of the philosophers. This would require modeling the inside of the mouths, including tongue and teeth, and wound up being too much of a challenge for my beginning 3D students.

Aristotle with a quote attributed to him.

Aristotle with a quote attributed to him.

In addition to the animated torsos, I had students use Bryce to build recreations of temples and other buildings found in the cities where the philosophers lived, such as Miletus, Abdera, Acragas, Ephesus, Athens, and Elea. We had to find diagrams or illustrations of these temples. The Temple of Artemis at Ephesus was one of the Seven Wonders of the Ancient World. Using only artists’ renditions and photos of a scale model found in Ephesus today, the students who did this temple had quite a challenge. Not all of the temples were completed, but many of them got at least the buildings done with excellent detail. It pushed our computers to the limit.

Empedocles with added Photoshop effects.

Empedocles with added Photoshop effects.

One of the many projects I’m trying to finish up this summer is to complete all these animations along with hand-drawn illustrations of the philosophers. I have a watercolor painting I did several years ago called The Elusive Atom that included many of these philosophers, and I’ve used Adobe Photoshop to isolate the philosophers from the background. I also have my pen-and-ink illustrations using homemade ink as well as homemade watercolors. I’ve gradually been building up these projects so that when I do the final editing of the video segments and include Dr. Graham’s interview footage, I will have enough materials.

I knew it would take some time to transcribe and edit the interviews, and that I would have to recreate my original animations (they were designed for SD video six years ago and I now want to do this video in HD) and revise and re-record the narrations. I wanted to start using all these materials now, so when my students created the large timeline banner on atomic theory, I made the banner cover all the history of chemistry and included many 3D images, illustrations, and photos of books from the Chemical Heritage Foundation.

Another view of Heraclitus. I set the models into Bryce, added a marble texture and skies, and created a simple camera orbit animation so that renders could be easily created from different sides.

Another view of Heraclitus. I set the models into Bryce, added a marble texture and skies, and created a simple camera orbit animation so that renders could be easily created from different sides.

I have not given up on creating a series of videos, posters, a book, and other materials for this Elements Unearthed project. My need to earn a living as a science and technology teacher has kept me too busy to do much more than write a few blog posts now and then. But I keep filling in pieces, such as the tour of Adonis Bronze I reported on in my last post, and research of other ancient art forms. I took a group of students on a tour of Nevada mining towns last year. I’m only halfway through blogging about my trip of Colorado mining towns in 2012. What I need is two years of free time and about $100,000 in grants to focus on this project, travel to the places I still need to visit (there are many), and put everything together. Have boxes of tapes I need to capture, but not enough money to purchase the hard drives needed. So if you know a rich patron who’s got money to spend on such a project, please let me know!

More Aristotle quotes.

More Aristotle quotes.

In the meantime, I’m still trying to keep this blog going despite having so much happening in other areas of my professional life. It’s been a crazy year. Mostly I’ve been involved in aerospace and STEM education activities, and I’m writing about some of them in my other blog.

Advertisements

Read Full Post »

Nuremburg Chronicles Empedocles

Anaxagoras and Empedocles, from the Nuremburg Chronicles

In my last post, I showed the statistics of what this blog has accomplished so far. I feel very good about where we’ve been, but now it’s time to describe where I plan on going this coming year.

Given that I am not teaching chemistry this school year, my work on the Elements Unearthed project has slowed down a bit as my attention has been diverted elsewhere by the astrobiology projects (the podcasts and CLOE animations) and other projects that I’ll describe next week. I anticipate teaching chemistry again next year, and I am in the process of writing up a series of grant proposals (all of which have to be done by Feb. 1) that, if successful, will provide funds for purchasing some iPad tablets and probeware that will allow us to do some environmental field research.

fluorite and emerald

Fluorite and emerald crystals in the collection of Keith Proctor

In the meantime, I have a large backlog of videos that I have taped of various mine tours and interviews I’ve done across the country. I need to edit these into final videos and report on them in detail on this site. In order to keep myself on track, I’ve created a schedule for when I’d like to do each video and the topics I’ll cover here as I work on them.

This January, 2012, I am going to start at the beginning and look at ancient chemistry and our knowledge of the elements in prehistoric and early historic times. Then in February, I will start to work on my Greek Matter Theories videos. I have previously created all the script and narration and have even set up the video files and begun the graphics and animations. It’s high time I finished these. I’ll start with an overview of the Greek Ideal in philosophy and science, then talk about Thales and the Miletian School, then Parmenides and Zeno and the Eleatics. In March, I will talk about Heraclitus and Empedocles and the atomic theory and Plato. In April, I’ll move on to Aristotle, Epicurus, and the debate on elements versus atoms, ending in the theology of St. Thomas Aquinus and how atomic theory came down through the Middle Ages.

In May and June I’ll discuss the practical side of chemistry, with a look at ancient crafts, including metalworking, glass making, and other medieval technologies, including a detailed look at Agricola’s De Re Metallica (which I have many photos of).

Dalton molecules

Diagrams of molecules by John Dalton

By July I should have the funding I need in place to start the field research. My plan is to partner with another school, perhaps Tintic High School or Wendover High School, to travel out to nearby mining sites and use the probeware and iPads to collect and record data on soil and water environmental conditions, such as the pH of soil and runoff water near old mine dumps. I’m especially interested in seeing if the EPA efforts to mitigate contaminated soil in and around Eureka, Utah have been successful. I’ve talked about those efforts in previous posts (especially here: https://elementsunearthed.com/2010/06/09/the-legacy-of-the-tintic-mining-district/ ), so I won’t talk about them again now. We would use GPS coordinates and GoogleEarth to set up a grid of sample sites both in and out of the recovered area. We would sample the surface and two feet below ground. It would require several trips and coordination with local students to gather the data, but it is a project that would fit very nicely with the research I’ve already done. If I can get enough money together, I would like to rent a portable X-Ray Fluorescence Spectrometer which can read element abundances nondestructively on the site.

In preparation for all this, I need to make one more trip to the Tintic district in June to photograph and videotape the mines in the southwest area, which were the first mines discovered, including the Sunbeam and Diamond mines. One of my great grandfathers, Sidney Tanner Fullmer, died as a result of injuries suffered in an accident while working in the Diamond mine, leaving my grandmother an orphan to be raised by her aunt and uncle. So this history has a particular interest to me.

One thing I plan on doing, if we can work out a partnership, is to set up an evening in Eureka at Tintic High School where townspeople can come in with photographs and tell their stories of mining and life in Eureka before and after the EPA efforts. We’ll scan the photos and videotape the recollections, then combine all that with the video I’ve already done of the Tintic Mining Museum and local area. Ultimately, my students will help me script and edit a three-part video on the Tintic District, perhaps even done well enough that we could market it to KUED, the PBS station in Salt Lake City.

Tintic load site

Ore loading platform in the Tintic Mining District

The months July, August, and September will be dedicated to this effort and will result in the best documentation created so far on video of the history and present of the Tintic Mining District.

October will be dedicated to Zosimos of Panopolis and such Arabic alchemists as Jabir ibn Hayyan. November will begin a discussion of European alchemists, from Roger Bacon and Ramon Llull through the Middle Ages. I’ll draw on the many photos I’ve taken on alchemical texts at the Chemical Heritage Foundation. The history of alchemy will continue through December, 2012 and on into January, 2013. In February and March, 2013, we’ll discuss the emergence of modern chemistry through Boyle, Priestley, and Lavoisier through Dalton, Avogadro, Berzelius, and others.

In April through June of 2013 we will switch gears and talk about nucleogenesis and the origin of the elements, then the physicists and chemists that have helped us understand the structure of the atom and quantum mechanics. From there, I will probably begin to talk about individual elements and how they are mined and refined, with examples of the mining districts where they come from, such as the history of the Viburnum Trend in Missouri and the lead mines there, or the gold mines of Cripple Creek, Colorado. I really do have enough materials now to keep this blog going for at least two years. And I’ll be gathering more all the time. I will also dedicate occasional posts to my efforts as a chemistry teacher and to science education in general, including my experiences at conferences, etc.

Van Helmont

Portrait of Joannes Baptista van Helmont

Well, it is an ambitious schedule. I hope to do at least one post per week, probably on weekends. I hope to complete at least one video segment every two months or so. Next week, I’ll start us off with an overview of the history of chemistry.

Read Full Post »

The Five Elements

The Five Elements

As I teach chemistry and astronomy again for the first time in several years, I’m having a lot of fun getting back into the physical sciences with all of the lab experiences I’d collected and developed over the years before I started teaching multimedia exclusively. I’ve also added a number of excellent activities that I picked up from my experiences with NASA and from various conferences and presentations. It’s also a lot of fun to start incorporating my expertise in media design and technology in ways I never could before, as well as the materials I collected at Chemical Heritage Foundation in 2009. For example, I just finished teaching a Keynote presentation on Greek matter theories that I put together myself using photos, drawings, illustrations, and 3D animations (mostly my own) and information collected at CHF. I have all the files stored on various hard drives that all hook into my Mac Powerbook (about four terabytes total). Some of the images I pulled off the Internet at school using our wireless router and Airport technology, and once the Keynote was finished, all I had to do was hook my laptop up to a projector and give the presentation (complete with animations and audio clips) using an infrared remote. Here’s the presentation, in Powerpoint format. If you want to use it, be my guest:

Greek_Matter_Theories

To me, all of this seems remarkable, even miraculous. And here I am writing about it on a Blog, publishing my experiences instantaneously where anyone in the world can read them, and even sharing the presentation itself. Yet I feel as if I’m only just scratching the surface of what these new technologies can do. That’s part of why I’ve been working on this Elements Unearthed project for the past several years; there are so many connections between science practitioners and students that can still be made and which I hope to develop, so many innovative methods of teaching that no one’s thought of yet. I’m a digital immigrant; my students are natives. I’m always playing catch up to what they’re already using daily.

Engraving of Democritus

Engraving of Democritus

So far this blog has been written entirely by me (David Black) since it debuted in Oct., 2008. Now that I’m teaching chemistry again I am turning over much of the posting to my students, who will be taking turns once per week adding information about the research project they are pursuing. They have chosen between an element (such as copper), a material (such as cement), a method of generating energy (such as solar power), or a time period from the history of chemistry (such as medieval European alchemy) and are compiling notes into an MS Word document with references.

With each post, they are to include about 500-800 words of writing in their own words culled from all of their research notes and include relevant images or diagrams. They are also producing a nicely laid out document such as a newsletter, poster, or brochure that will be converted to PDF format and linked to this blog for download. It may take a week or two for the first few student posts to contain these linked files, but they will come. My hope is that any chemistry teachers or students out there who are reading this blog will be able to download these linked files and use them in your own classrooms.

Plato and Aristotle

Plato and Aristotle, Detail from The School of Athens by Raphael

During second term, the students will be developing and practicing a hands-on demonstration that involves some property or aspect of their topic. We’ll present these demonstrations to the elementary classes at Walden (I’ve already met with the teachers to plan this out) and the students will also present them to each other for feedback. During third term, we’ll create a more extensive project from their topic: a detailed Powerpoint or Keynote presentation or a three-minute video or a computer game. They’ll present these in class again, then fourth term put all of this together for a back-to-school science night for the public and their parents and siblings. We’ll videotape these presentations and share them with you as well.

I’ve done all of these things before in various multimedia or chemistry classes, but this is the first time that technology and opportunity have combined to allow me to put it all together. I am still looking to build partnerships with local organizations (museums, mining associations, etc.) that will combine my students’ media skills with their content. I’ll still visit mining towns, take tours of museums, and continue to post about how technology can be used in the science classroom. I also plan on writing more grants and professional articles. I’ll continue to create longer format videos to go with the student short videos (the Tintic Mining District is up next after I make some changes to the beryllium videos).

This blog has certainly been successful in what I’ve intended it to be. Last month (September) was the best month so far with over 2700 visitors to the site. I’ve had over 23,500 visitors total, most of them this year. I would love to hear from any science teachers or students that have found this site useful.

I look forward to seeing what my students come up with as they post about their topics. I’m encouraging them to do more than just a list of properties, to dig deeper and talk about the unusual stories and histories of each element or material. And now, I am pleased to introduce my chemistry students’ blog posts . . . .

Read Full Post »

 

Stained glass artwork at National LIberty Museum

Stained glass artwork at National LIberty Museum

 

    Each day as I travel to Chemical Heritage Foundation, I walk through the heart of old Philadelphia, where history is found in layers. This city is over 325 years old, whereas the towns in Utah where I come from can barely claim 150 years. Just about every building either is historic in its own right or is built over an historic spot. CHF is located at 315 Chestnut Street, which is diagonal to Carpenter’s Hall (where the First Continental Congress met in 1774). Just a couple of weeks ago I realized that the alley next to our building leads to Franklin Court, which is where Benjamin Franklin’s house was located as well as his printing office. There is a museum that is almost literally underneath our museum at CHF (talk about layered history!) that includes replicas or originals of Franklin’s many inventions and scientific instruments among other exhibits. 

The Flame of Liberty by Dale Chihuly

The Flame of Liberty by Dale Chihuly

 

 

    I was hoping to have some of these sorts of synergies occur as part of my fellowship, but sometimes opportunities come up that are completely unexpected. One such happens to be next door to Franklin Court – only about ten feet away from our building. It’s called the National Liberty Museum, and it has an excellent display of the struggle for liberty and some of the heroes that have helped to achieve it. I didn’t realize this until I finally walked in last week, but it also is a museum of modern glass art. Each historical display is paired with blown and stained glass artwork that compliments and emphasizes its theme, ranging from highly realistic to abstract. Given how much work we’ve done this spring on stained and blown glass, I was pleasantly surprised to find this. I was amazed at the beauty of the glass work and the power of the displays. They have a piece called the Flame of Liberty by Dale Chihuly, as well as several others by him. He is one of the great current masters of blown glass. They also have some beautiful stained and sculpted glass pieces.

 

Blown glass platters by Dale Chihuly

Blown glass platters by Dale Chihuly

 

    I’m also finding there are opportunities in the vicinity of Philadelphia that could become possible episodes. There is a zinc mine in northern New Jersey that gives tours; a coal mine up in the Poconos; the Drake oil well (the first one) in Titusville, in the extreme northwest corner of Pennsylvania (I would have to stop there on my way back to Utah); and other possibilities. If I take advantage of all of these, then I will have enough materials to last for months.

    Speaking of episodes, here is a video clip, as promised, that was presented at my Brown Bag Lunch two weeks ago. I’ve added a few images and finished out some animations since then. It is meant to show two samples of the episodes on the origins of atomic and elemental theories in ancient Greece. I am showing this here to get some feedback from anyone on how well they like (or don’t like) the animations and illustrations used, as they are representative of what you’ll see in all the episodes. Please feel free to comment on these video samples; the more specific, the better. 

    Meanwhile my research into how atomic theory changed and developed in the Middle Ages is continuing, and I will have some things to say about that next time.

Read Full Post »

    In this blog entry I’d like to discuss some of the ideas that I have been researching so far here at Chemical Heritage Foundation, report on a conference I attended last week, and give an overview of my plans for the next week.

Empedocles of Akragas

Empedocles of Akragas

    I’ve been conducting my research at CHF for about 2 1/2 weeks. So far I am on schedule for the topics I wish to cover while I’m here in Philadelphia. My goal for these first two weeks was to survey the theories of elements and atoms proposed by the ancient Greek philosophers, then use the third week to research how these theories were carried into the Middle Ages. I used to think that Greek scientific thought on the nature of matter could be divided into a neat dichotomy, with theories of elements (stoicheia) as proposed by Empedocles and Aristotle on one side, and theories of atoms as proposed by Democritus and Epicurus on the other. As I have dug deeper, however, I find that the issue isn’t nearly so simple. Not only did the Greeks theorize about the nature and structure of matter, they also looked at the nature of change, the origin and fate of the universe, and the underlying forces that drive it all. This creates whole sets of conceptual dichotomies. Attempting to sort through all of this while getting to know the personalities and lives of these philosophers has been a fun challenge. I can’t say I’m much of an expert yet, but I have enough to begin to put together a podcast episode on this topic, to be completed and uploaded by the end of August.

    At the risk of over-simplifying, here is what I’ve found: the Greeks were already thinking about where the universe came from and what it was made out of by the time of Thales of Miletus, around 585 B.C., who was considered one of the first philosophers (independent thinkers – “lovers of wisdom”). Thales proposed that everything was made of water, although his follower Anaximenes thought it was air. By about 500 B.C., Parmenides of Elea taught that change was an illusion, that the senses weren’t to be trusted, and that there could only be Being and Non-being. He denied the possibility of empty space (a void) saying it was a logical impossibility. His student Zeno, in a series of famous paradoxes, such as the one about Achilles and the Tortoise, showed that motion (and therefore change) was impossible.

Democritus of Abdera

Democritus of Abdera

     In contrast to the Eleatic School, Heraclitus of Ephesus taught that change was the only constant in the universe, that you can’t step in the same river twice because both you and the river have changed in between. He felt that fire, as a symbol of change, was the universal element. As a compromise between the extremes of Parmenides and Heraclitus, Empedocles of Akragas proposed that there were four elements (earth, water, air, and fire) and that although these elements were eternal and changeless, they could combine and break apart to form new materials. He felt that their were two opposing forces, what he called Love and Strife, which tried to bring the elements together or break them apart.

    Also in contrast to the Eleatic School, Leucippus of Abdera proposed that all things were made of small, indivisible, unchanging atoms which traveled in a void, combined by the forces of a primordial vortex into larger clumps of matter. His pupil, Democritus, took these ideas further and said that nothing existed except atoms and the void, and that atoms combine from necessity (he was a bit vague on what this meant). Unfortunately, most of his original works (some 70 books) are lost and we know of them only from the references of others.

Aristotle's Hylomorphism Theory

Aristotle's Hylomorphism Theory

    One of those others was Aristotle, the pupil of Plato and teacher of Alexander the Great. Aristotle tried to create a system of knowledge that tied everything together, including the material world and the heavens, and that explained the nature of change. Like his teacher Plato, he felt that there were ideal forms that created the patterns for all things, and that all things had purpose.  He taught that the primordial subtance (hyle) took on the forms (morphe) of the four pure elements, and that these elements had properties including hot and cold and wet and dry. All other materials were mixtures of these elements. By changing the properties of one material, it could be transmuted into another, such as base lead maturing into precious gold. He also felt that the elements were arranged in spherical shells with earth at the center, surrounded by water, then air, then fire. The heavy elements sank because of a force he called gravity and the lighter elements rose through a force called levity. Finally, he proposed that a fifth element (literally the “quintessence”) called ether surrounded fire and was the material from which the incorruptible heavens were made.

Aristotle and the Elemental Spheres

Aristotle and the Elemental Spheres

    Aristotle’s views were brought into harmony with the Catholic Church by the Summa Theologica of St. Thomas Aquinas. Democritus’ views on atoms were supported by Epicurus and therefore seen as too materialist and hedonistic by the church, and they fell out of favor (but never entirely died, as I’m finding out this week). It wasn’t until the Enlightenment that atomic theory began to revive.

    Now, of course, this is a very simplistic overview. I’m in the process of writing this all up in more detail, including some interesting though apocryphal stories of the philosophers, for a podcast episode of The Elements Unearthed. I’ll be presenting this information, and giving an overview of the project, at a Brown Bag Lunch next Tuesday, June 23, from 12:00 to 1:00 here at Chemical Heritage Foundation (315 Chestnut St., Philadelphia). The public is invited, so if you’re in the area, please stop by. It will be in the 6th floor conference room. I will have some samples of animations and images with narration for this new episode, as well as previous episodes created by my students at MATC and a presentation on the project as a whole.

Epicurus

Epicurus

    One final note from this last week. I had the opportunity to attend a conference entitled “Composition to Commerce: Chemistry, History, and the Wider World” held June 12-13 at CHF. It was set up as an opportunity to hear experts in the field of chemistry history present some of their current work and to discuss the historiography of chemistry; that is, how one goes about telling the history of chemistry. Although I felt myself to be a bit of an interloper, I was excited to find that some of the best experts in the field were there – people like Lawrence Principe, William Newman, Alan Rocke, Ursula Klein, and others. In my researches here I keep coming across their names. I didn’t get the chance to talk to all of them, but at least being there and seeing them lets me know who they are. I hope to enlist their aid in this project, perhaps as Subject Experts on alchemy and the history of atomic theory that I can interview later this summer. I also found the conference interesting in how various historic alchemists/early chemists were treated and how some names I’d never heard of are now surfacing as having had an important impact on the history of chemistry, such as Gassendi, Sennert, Starkey, and others. I’ll enjoy getting to know their stories as well as the those of the better known figures such as Boyle and Lavoisier.

    Anyway, wish me luck on my presentation next Tuesday. Stop in if you can. After that, I must dig into revising my application for the National Science Foundation which is due on Thursday. But more on that next week . . . .

Read Full Post »