I’ve written before about my views on student engagement and involvement in education; that students learn best when they are most engaged and involved in the educational process (here’s a link to a previous post on the subject). This is all based on 20 years of observation that I am usually the person who learns the most in my own classroom, simply because as I prepare materials to present to my students, I have to learn them very thoroughly myself, and as I teach these materials, I am making a type of commitment to the concepts; staking my own reputation that what I am teaching is correct. The gist of my philosophy is that if I can get students to become teachers themselves and fully commit to the concepts they are teaching then those concepts will never be forgotten. You could compare this to the old often-repeated adage:
Feed a man a fish, and you feed him for a day. Teach him how to fish, and you feed him for a lifetime.
To which I would add: Train a man how to teach others how to fish, and you feed a whole village for eternity.
A number of years ago, while teaching at Juab High School in Nephi, Utah, I began a program to take my advanced physics and Chem II students to the Nephi Elementary School once per month to present lessons to the classes. I worked with the teachers there to come up with lessons that fit into their curricula but also could be easily demonstrated. My students had to practice the demonstration, write up a brief 20-minute lesson plan with a handout, and receive feedback from their peers, myself, and the elementary teachers.
It wound up being one of the most effective projects I ever developed. My students were always a bit nervous the first time, but after seeing how excited the elementary kids were, they caught the same enthusiasm and soon were asking me when our next visit would be. They also presented these mini-lessons at a back-to-school night at the end of the year for their parents and other students to see. It was a definite win-win activity; both the elementary students and my students benefited greatly and it was worth all the effort we put into it.
Since teaching at Juab High School my teaching assignments have not allowed me to continue this program, although at Mountainland Applied Technology College my multimedia students did participate in the Mars Exploration Student Data Team program and presented at a symposium at Arizona State University in 2004. My students also created a two-hour documentary on the history of AM radio in Utah that aired on KUED, Salt Lake’s PBS station, in 2007. You could say that they were teachers and content creators from these experiences.
Now that I am back at a high school teaching science, I have reinstated the students-as-teachers concept through what I am calling the Walden Elementary Science Demonstration Program. I’ve even written a small grant for the Air Force Association last week to support this. On Friday, Nov. 12, I took my astronomy students down to the elementary classrooms at Walden to present lessons. Just as at Juab Elementary all those years ago, my students picked a topic and a demonstration, practiced it, wrote up a script or lesson outline, and then presented in the classes. I videotaped parts of the presentations and took photos. The elementary students were excited, engaged, actively getting their hands on materials, asking questions, and participating. My students did extremely well for our first time. Here are some of the presentations that they did:
Shannon and Kenzie presented the properties of magnets and did a demonstration of a gravity assist maneuver using neodymium magnets and steel shot to represent planets and a space probe (I once got two neodymium magnets stuck up my nose while presenting this same demonstration to a group of teachers at the Jet Propulsion Laboratory. It’s a long story . . . .) Shannon and Kenzie had the challenge of adapting their lesson to be understandable for kindergarten students and for 4-6 graders (they presented twice). They demonstrated some large industrial strength iron horseshoe magnets I’ve had all these years and the kids had fun trying to pull them apart.
Cael and Koplin taught about how difficult it is for humans to survive in space, and demonstrated the properties of a vacuum by blowing up marshmallows. Cael’s father helped him construct a homemade vacuum chamber out of a Bell canning jar and a hand pump (very ingenious, actually, as you can see in the photo). Students had fun pumping out the chamber, seeing the marshmallows expand, and then releasing the valve and seeing them suddenly shrink again.
Olivia and Annette demonstrated how the surface of the moon formed using the lunar cratering activity (dropping rocks into a pan of flour and cocoa powder). They also tied it into a map of the moon, and had the kindergarten students repeat back what they had learned to win a prize – a piece of rice krispy treats coated with frosting to look like the moon’s surface.
Scotty and Colman taught inertia and momentum by demonstrating the properties of an inertial scale I made a few years ago. It’s basically a metal ruler with a film canister at the end clamped down on a table’s edge. The more heavy a rock you place in the canister, the slower the ruler will vibrate due to the rock’s momentum. They also demonstrated dominoes, yanking a piece of silk out from under an object, etc.
Maxson talked about the surface of Mars and how hard it is to find a good landing place. His partner wasn’t able to attend that day (he had an activity in another class that went unexpectedly long), but Maxson was able to fill in for his missing partner by having the 4-6 graders look for possible landing sites on maps of Mars.
Alexi and Erika presented the scale of the solar system to 1-3 grade students, showing them various balls that represented the sizes of the sun, Jupiter, Earth, Mars, etc. They also showed GoogleEarth. Then they took the students outside and had them stand in positions of relative distances for the planets. I didn’t get a chance to go outside and photograph that part of the activity, but I heard from the teachers that it went very well.
For me, the best part of doing these presentations is at the end of class when all my students gather back in my classroom to report on how it went. I wish I had had my camera running. They were telling each other what went right and wrong, what the elementary students had said and done, and I knew at that moment I had achieved my real purpose: my students were excited about science, and this was an experience they will never forget. As for the concepts they had to learn in order to make their presentations, I think it’s safe to say they will never forget them, either. I uploaded the photos I had taken to my laptop and did a slideshow at the end of class so that they could all see what the other teams had done. At the end of the year, we’ll do a video presentation as well. Not bad considering I hadn’t told them about this until two days before their presentations, so that they had only two days to choose and prepare their lessons. They did great! Now in December my chemistry students get their turn.
Leave a Reply