Feeds:
Posts
Comments

Posts Tagged ‘project-based learning’

Education as Pollock painting

I found this quote on a TeachThought website. It captures the spontaneity, engagement, and creativity of extraordinary education.

Several years ago I attended the closing banquet of our state science teacher conference and overheard two teachers comparing notes in a friendly competition. They had apparently gone through the same teacher development program together. One bragged that 86% of his students had passed the state science standards test at the end of the year. The other claimed that his students had a 93% pass rate, with the implication that having more students pass the test meant that he was the better teacher.

They were both new teachers and I can forgive them their misunderstanding. I felt like jumping into the conversation to remind them that having most of their students pass the standards aligned test only proved that they were standard teachers, when what our children deserve is extraordinary teachers. Unfortunately, there is no state test for extraordinary education.

school nurse

Is our public education system ailing and in need of reform? Yes, in that it insists on treating each child like a cookie-cutter clone using a one-size-fits-all set of standards.

Would any of us recognize extraordinary education if we saw it? Can we even agree on the characteristics of extraordinary education? For my own definition, I say that students must be deeply engaged in the learning process, with memorable learning opportunities that invite active participation and critical thinking, creative problem solving, collaboration, and communication. In the end, education should have a lasting impact on their lives. And it should be fun, meaningful, and inherently interesting for them!

I learned during my third year of teaching that Project-Based Learning (PBL) can be a powerful route to extraordinary education. I’m not trying to say that I am an extraordinary educator, but I have tried with some success to bring meaningful opportunities to my students. To do this, I have had to look at my course standards in a different way.

Ed guidelines

There is a great need to change how we do education, but the forces that resist changes are the teachers and administrators and communities that need them the most. The bureaucracy of our school system is the very thing that holds us back. As one individual teacher, I have to accept that I may not be able to change everything, but I can at least change the way I do things.

The push for standards in education is simple to understand. We don’t want students with gaps in their understanding of the world, nor do we want teachers who are incapable of bridging those gaps. Society needs well-educated people in order for them to make informed decisions. Educational standards were developed to achieve a minimum level of essential literacy and knowledge across all students.

This brings up a deeper question: what constitutes essential knowledge? As one of my college professors put it, is there any knowledge (or skills) that a person must have? Every subject expert has a list of what he or she considers to be the essential concepts of the subject, and the list tends to multiply in any committee put together to consider new educational standards. Heaven forbid that even one math student would not understand the quadratic equation. The world might very well collapse if that happened! So we have to create a standard to address that concern, even if only a minority of teachers hold this opinion.

As a result of this drive toward comprehensiveness, all states have far too many educational standards than are truly necessary for each discipline. In chemistry, is it critically important for students to understand Le Chatelier’s Principle of Reaction Equilibrium? You’ll find it in all the state standards. But is this really necessary for what the student and society need? If taught well, it might help them understand some aspects of everyday chemistry, such as why the Haber process works to produce ammonia or why shaking a warm soda bottle causes the carbon dioxide to spray out. But can they become productive citizens without knowing this? Probably. Why force them to learn what they can easily live without? This has bothered me for years.

do what I say

All the shareholders in the education system (parents, children, teachers, administrators, state officials, communities) point the fingers of blame at the others and expect them to be innovative, but are unwilling to change their own viewpoint of what education should be.

What I finally recognized is that standards are meant as a guide to the lowest acceptable level of understanding in a class, not as the final target. Anyone who teaches to the standards alone (especially to the end of year test) will succeed in creating a standard class, an average class, but not an extraordinary one. If we want all of our students to graduate as identical cookie-cutter clones of some “standard” citizen, then standards-based education and the factory model of education will suffice. But if I want students who are strong individuals, creative problem solvers, and innovators, I must go beyond the standards and teach for excellence and quality, not mediocrity. The standards are supposed to be a means to that end, not an end in themselves.

Deeper into Theory

Many of our vaunted education theories support this reductionist view of a subject. For example, Bloom’s Taxonomy is widely used and quoted in educational circles. It poses that there is a hierarchy of understanding and learning; that remembering facts and content details comes first as the foundation of all learning and then leads to understanding, then to application, then analysis, then evaluation, and finally to creativity. The implication is that we need to move our educational activities toward creativity and higher-order thinking skills. The problem with this pedagogical model is that too many teachers never get to the higher-order levels; they get stuck on remembering and regurgitating facts with little real understanding and even less application, analysis, evaluation, or creativity.

Flipping Bloom

Bloom’s Taxonomy, often quoted but poorly understood. Instead of starting at the lowest level (remembering facts) and working our way up, we should start with creativity and work down to facts. Think of this pyramid as flipped upside down, or of creativity being the ground level but the other levels being roots underneath, reaching down to the facts. Students will learn the facts they need if they start with the requirement to create.

So many educational theorists are beginning to propose that Bloom’s Taxonomy should be stood on its head. Creativity should come first, not last. As students create, they can be taught to evaluate the effectiveness and even the aesthetics of their work (more on this in my next post). To do this, they will need to learn to analyze their work in the same way that engineers analyze the effectiveness of their prototypes and models. To analyze the prototype, they have to build it first, which involves the application and understanding of scientific theory. To gain that understanding, students will have to look up and remember the scientific facts and theories involved. In other words, teaching creativity first and insisting on quality work provides the impetus and motivation for students to find the information they need, understand and apply that information well enough to build prototypes, then analyze and evaluate the effectiveness of that prototype against specifications. Students will look up what they need to know because it is necessary for them to solve the problems that occur as they create, build, test, and analyze prototypes. We call this the engineering or design process.

This is where Project-Based Learning (PBL) comes in. Only through extended projects can students have the time, independence, and creativity to deeply explore and understand a subject by following their own curiosity. Projects are the only way to ensure that the intent for having standards is met and that we reach extraordinary education. This happens through what I call “standards overreach.”

Shorten the pole vault

It doesn’t make sense to raise standards while lowering the resources available to schools to reach those standards. There’s nothing quite like an unfunded mandate.

Standards Overreach:

Let me start with an example. During the first week in my first year biology classes, I introduced the concept of the characteristics of life and the abiotic factors necessary to sustain it. This is a common biology standard in most states. Now if I were a standards-obsessed teacher, I would teach to this point as my target for student understanding. I might put up a list of terms and have students write down definitions in the hope that they will understand them. This is a low-level activity without much student mental engagement. They’ll forget these definitions as soon as the test is over, if they retain them even that long. I might write the terms on a worksheet and have them look up definitions. Slightly better but still boring for everyone concerned, although it does meet the standard. I could show them a video about it and have them take notes. A bit better but still teacher-centered and passive for students. I could have students brainstorm the characteristics of life, then ask them to provide examples, or do a lab activity, etc. Getting better but still not entirely effective.

What all of these activities have in common is that they are targeted specifically to this one standard alone, and on the end of unit test, only some of the students will show understanding (or at least regurgitation). I have only partially succeeded.

Exoplanets

What kind of life forms could exist on an exoplanet or exomoon, such as shown here? As students ask and answer such questions, they come to understand the characteristics of life and the abiotic factors that support it.

Or I could do this in a completely different way through a student-centered, engaging project. I could have them go beyond the standard (overreach it) knowing that at minimum they will understand the standard and possibly much more. So I use my passion for astrobiology and experience conducting field research studies of extremophiles in the Mojave Desert to create a project for my students. We’ll collect halophilic bacteria from the Great Salt Lake and let them grow in a Winogradsky column then analyze the pink floaters under a microscope. We’ll extend this to research on other extremophiles and use real examples of how they are adapted to their environments, with students developing posters or presentations or other summary products of their choice. Do all forms of life on Earth need oxygen, or even air? No – there are lithoautotrophs that live in rocks and get carbon dioxide from minerals, not air. Does all life require light and plants at the bottom of the food chain? No. Look at the chemosynthetic bacteria that are at the bottom of the food chain near deep ocean hydrothermal vents.

Square test in round head

How can one test measure the quality or extent of knowledge for every student, even if the tests are adaptive? How can a single measure determine the effectiveness of every teacher?

Then they’ll look at potentially habitable exoplanets (and learn a bit of astronomy and physics on the way) and choose an actual planet, then develop a drawing or clay model of an alien life form they envision, complete with descriptions of how it is able to survive in that environment, the abiotic factors that exist there, and the ecosystem it is part of. How does it eat or get energy? How does it move around, reproduce, adapt to changes, grow and develop, etc.? How would we detect it and know that it is alive?

As a capstone event or product, they produce posters or other products on their research into and present them at a science showcase night, just as if they were professional scientists at a conference. At the end of the evening we can watch and analyze the realism of the movie “The Andromeda Strain.” In the process of thinking all of this through, the students will deeply understand the characteristics and factors necessary for life. They will all easily meet the standard because we shot way beyond the standard.

Relax and take the test

With high stakes testing supposedly measuring the effectiveness of teachers and schools based on how students take the test, its no wonder teachers are teaching to the test. Their jobs are on the line. Yeah. No pressure . . .

You will argue that this type of project will take days to complete, when you can cover that standard in just one day. Maybe so, but we haven’t just covered that one standard. Without my having to lecture them, my students have learned about evolution and classification, microbiology and using a microscope, physics and astronomy, and even developed artistic skills. They have learned about scientific communication, which is part of one dimension of the Next Generation Science Standards. We have therefore touched on about ten other standards from multiple disciplines in the five days of this project. If I tried to teach each one of those standards one at a time, it would take far longer than our project did. My students’ understanding will be deeper and more permanent than any lower-level unengaging assignments can achieve.

The test to test us for the test

No Child Left Untested . . . How can teachers possibly meet education standards when they have to spend all of their teaching time administrating tests to measure how well they are meeting education standards?

Meeting Standards through PBL:

Here is another example that we completed just two weeks ago. We had moved into our units on human anatomy in my biology classes. I wanted students to learn the function of muscles and bones and how they provide support and movement. Now the “standard” way of doing this would be to provide diagrams of the skeleton and muscles and have students label all the names of all the part. Tibia. Fibula. Patella. Femur. Pelvis. Clavicle. Sternum. Latisimus Dorsi, Deltoid, etc, etc, ad nauseum. And many teachers leave it at that, with no understanding of how it all works together. Some will go on to teach (or more likely have the students read in the textbook) how flexor and extensor muscles must be paired, how they are anchored to the fixed bone with tendons reaching across the joint to the mobile bone. But only a few teachers will have students apply this knowledge, or design experiments to collect data that can be analyzed, or have students think critically to evaluate the quality of their knowledge, or do something creative with it.

So I turned the process on its head. I did draw a diagram of the elbow joint on my whiteboard as an example, showing and labeling the parts of everything. I explained how the bicep and tricep work in tandem to flex and extend the joint, and how ligaments, cartilage, and all the other parts hold it all together and allow it to move. That was all I did, and I didn’t really need to do that. It was just a quick 15-minute introduction. Then I gave them a challenge: using the materials I provided, they had to build a mechanical arm that would duplicate the movement of the elbow joint. As teams, they would need to use my diagram as a guide, look up whatever other information they needed, then design and build their own arm. It had to meet certain specifications: It had to have the same range of motion as a regular arm, not bending too far or extending too far (it could not be double-jointed). It had to have a way of both flexing and extending the forearm. And that was it.

I provided lots of cardboard, wooden skewers, beads, string, hot glue guns and glue sticks, etc. I divided the students into three-person teams, and required them to show me a sketch of their plan before they were allowed to collect materials. Then they set to work. In every case, their first attempts didn’t work very well. Some of the students wanted to quit at that point, saying that this task was “impossible,” but I provided encouragement and hinted that they should look more closely at how the actual human arm does this; obviously, it isn’t impossible if our arms can do this. They tore parts off their models, reglued, tried again, and eventually all the teams succeeded. They were all different, but all mimicked the construction of the human arm in important ways.

Round head in square hole

Standards imply that every student is the same, and that one size fits all in education.

With that project done, the same teams went on to create working models of the human hand. These models had to be able to create several gestures of my choice to show control of individual fingers, be able to pick up and move small objects to show dexterity, and be able to grasp and lift a cup full of water (added slowly) to demonstrate strength. This was a much harder task, and the same students again tried to give up. They wanted me to provide step-by-step instructions, but I refused. I repeated that there were no right answers, no one right way to do this. Some had to redesign from scratch, which was frustrating, but they overcame this frustration and eventually all succeeded.

It took seven class periods to accomplish these two projects. I could have easily taught the basic concepts about the arm and hand in a day using traditional activities, and they might have remembered the details long enough to pass the unit test (with some repetition and review). This would have sufficed for the requirements of the state standards. But it doesn’t meet my own standards, which are much higher. And it meets those other two pesky dimensions of the Next Generation Science Standards: Scientific and Engineering Practices (engineering design process) and Cross-Cutting Concepts (modeling). We’ll look at teaching through building models in a future post.

So how did they do upon assessment? On the unit test, the students who completed these models showed a thorough understanding of how the arm and the hand work; not just the parts, but how they are shaped, how they operate and fit together, and even the importance of having opposable thumbs. Those teams that didn’t have effective thumbs had great difficulty lifting their cup of water.

All students received 100% on the essay questions related to these projects and all passed the test. They could repeat the facts, and they thoroughly understood the concepts. They will remember their learning far longer than traditional methods because they have applied their knowledge. They have analyzed problems that occurred with their models and evaluated their effectiveness against the specifications. They have revised, fixed, redesigned, and in short, they have created. They fulfilled all of the requirements for the state and the three dimensions of the NGSS, as well as all of Bloom’s levels. In addition, they learned resilience, teamwork, collaboration, and communication skills. Not all of the teams got along perfectly, and I had to work with them on how to communicate effectively to listen to all ideas and make a solid group decision instead of one person trying to run the show. Was it worth the extra time? Absolutely!

Tower of Education Babel

There are a lot of education buzzwords out there, a veritable Tower of Educational Babel that obscures instead of clarifying the problems of education and the need for reform.

Conclusions:

When administrators and parents and everyone else gets bent out of shape about standards and you feel a pressure to “teach to the test,” just remember that state education standards are the minimum expectation, and we should hope that you are a better teacher than that. Yes, you must meet the standards. You can get fired if you don’t. But state standards are not the end we are after, only one means to the better end of extraordinary education. So overreach the expectations forced upon you by your state, principle, or community and dare to teach to a higher standard. Mentor your students to deeper understanding, higher engagement, and further creativity. Dare to be extraordinary!

Read Full Post »

Starting out at a new school, I decided it was time to re-examine my personal philosophy of teaching and education.

Over the last several years, as I have been reporting my experiences in these blogs, I have paid attention to how effective I am as a teacher and what sorts of activities and lessons seem to resonate with students and provide memorable learning opportunities for them. From this I have developed my own model of education, which I have shared at conferences and workshop sessions. I will be starting a Doctorate of Education (EdD) program this fall at the University of Northern Colorado, specializing in Innovation and Education Reform. This will be a means for backing my theories up with empirical research, not just the anecdotal evidence I have now. I already know what I want to do for my doctoral thesis.

This is my revised model so far, with examples from my teaching experiences:

Creative Classroom Diagram v3-s

This is my revised model of education, what could also be called the Levels of Engagement model. The purpose of education, in my experience, is to move students from ignorance (no knowledge of a subject) through passive learning (sitting and watching or listening) to active learning (hands-on, experiential) and beyond to creative learning (students as explorers, teachers, and innovators). Students move from being consumers of educational content to interacting with content to creating new educational content or new science, engineering, art, math, or technology. The students become makers, designers, programmers, engineers, scientists, artists, and problem solvers.

I call this the Creative Classroom model, as the goal is to move students from Ignorance (lack of knowledge or experience with a subject) through the stages of being a Passive Learner (sitting and listening to the teacher or a video and consuming content) through being an Active Learner (students interacting with content through cookbook style labs) to becoming a Creative Learner (students creating new content as innovators: teachers, makers, programmers, designers, engineers, and scientists). Let’s look at these levels in more detail. It could also be titled the Levels of Engagement model, as moving to the right in my model signifies deeper student engagement with their learning.

Level 0: Ignorance

Ignorance is the state of not having basic knowledge of a subject. This isn’t a bad thing, as we all start out in this state, as long as we recognize our ignorance and do something about it. What our society needs are more creative and innovative people, not people who are passive or even willfully ignorant.

Ignorance is not bliss. What a person doesn’t know may indeed hurt him or her – if, for example, you don’t know that mixing bleach with ammonia will produce chlorine gas, you could wind up with severe respiratory problems. A basic literacy for science and engineering concepts is necessary for any informed citizen, since we live in a technological age with problems that need solving and can only be solved through science and technology.

If you do not understand science and technology, you can be controlled by those who do. How many people actually understand the technology behind the cell phones they use every day? They leave themselves vulnerable to control by the telecom companies that do understand and control this technology. If you don’t understand the importance of Internet privacy and share personal information on a website or Facebook page, you leave yourself vulnerable to people or corporations that can track your web searches or even stalk you online (or worse). I am fairly ignorant of the basic techniques for repairing my car. This leaves me vulnerable to paying the high prices (and the possible poor service) of a local mechanic, when I could save lots of money and ensure quality if I only knew how to do it myself.

As teachers our first responsibility is to lead students away from a state of ignorance. This seems simple enough, but anyone who teachers teenagers (and even some so-called adults) will know that some of them insist on remaining willfully ignorant, usually because they mistakenly think that they already know everything they need to know, which is never true of anyone. As the Tao Te Ching says: “To know what you know, and what you do not know, is the foundation of true wisdom.” So the first step to becoming a creative learner is to delineate, define, and accept our areas of ignorance.

Most Likely to Succeed quote

A quote from the introduction of “Most Likely to Succeed” by Toni Wagner and Ted Dintersmith. How long will it take before education systems realize that the old factory model of education is no longer working?

Level 1: Passive Learning

When people start learning a subject they are usually not sufficiently self-motivated to learn it on their own – but we hope they will reach that point eventually. Most inexperienced learners are passive. They wait for their teachers to lead the lesson, sitting in their seats listening to lectures or watching a movie or otherwise absorbing and consuming educational content. The focus in such classes is to complete individual assignments that usually involve only lower order thinking skills such as recall and identification. This is the level described in the quote above from Most Likely to Succeed by Toni Wagner and Ted Dintersmith.

At this level, teachers emphasize mastering the facts and basic concepts of a subject. Students are consumers of educational content, but do not interact with it or create new content. Common classroom activities include listening to lectures and taking notes or answering basic questions, watching a video or demonstration, completing worksheets, or reading a text. Student motivation is usually external, based on the desires of parents or teachers and the fear of negative consequences (poor grades, etc.).

Education at this level is all about efficiency but isn’t very effective, since less than 10% of what teachers share in lectures is retained by students beyond the next test. Evaluation is based on standards, not skills. There is always a need for students to learn facts and concepts, but it is better to provide engaging projects where the students will find out the facts on their own as a natural part of completing the project.

Level 2: Active Learning

At this phase, students start developing internal motivation as they engage and interact with content. Students are beginning to explore, but usually through activities that are fairly structured although more student centered than before. These activities are hands-on; students are doing and acting, not sitting and listening.

Common classroom activities would be “cook-book” style labs, with step-by-step instructions and pre-determined outcomes. Students begin to learn observation and inquiry skills, with some data collection in a controlled environment along with data analysis. Teachers still determine if the student has the “right” answer. They start to practice the 21st Century skills of collaboration, communication, and critical thinking. Unfortunately, most science classes stop at this level without moving beyond hands-on to the deepest level.

reasons for using inquiry

Inquiry-based learning shares many of the features of project or problem-based learning, in that it is student centered and empowers student voice and choice, allows a high level of engagement and meaningfulness as students take responsibility and ownership for their learning, and teaches resilience, grit, and perseverance.

Level 3: Creative and Innovative Learning

If the purpose of STEAM education is to teach students how to become scientists, technology experts, engineers, artists, and mathematicians then they must learn the final stages of inquiry: to ask and answer questions, to solve problems, or to design products. The purpose of science is to answer questions whereas engineering has the goal of solving problems through designing and testing prototypes. Both are creative endeavors as the result of learning is something new for society – new knowledge or new products.

In the Creative Classroom, the environment is completely open, without predigested data or predetermined conclusions. Students work on projects where they research a question important to them, develop a methodology, decide how to control variables, make observations, determine methods of analysis, and draw and communicate conclusions. At this level, students become innovators or inventors. They synthesize knowledge and apply it to themselves and teach others through writing blog posts, creating posters or infographics, presenting lessons and demonstrations, and filming and editing videos or other educational media. They become makers and programmers, building products of their own design. The students are creating and contributing to society by making new content, knowledge, and solutions.

Learning at this level is never forgotten but is difficult to evaluate with a multiple-choice test, as the focus is on skill mastery and competency instead of easily regurgitated facts. Overall, this deepest (and most fulfilling, motivational, and engaging) level is entirely student centered and driven, with instructors as mentors. Ultimately, once a student has practiced learning at this level, the teacher is no longer necessary; the students will continue to learn on their own, because they are now entirely internally motivated. These are the people that society will always need.

How This Impacts My Teaching:

As an educator, my goal is to move students toward Level 3 activities and projects. Where I succeed, the projects my students work on are meaningful to them, demand professional excellence, use authentic data, involve real-world applications, are open-ended, and are student-driven. The students are required to create, make, program, build, test, question, teach, and design. They are innovators and engineers; they are creative students.

To give some examples from previous blog posts on my two sites:

Rachmaninoff 430-630-1000-s

Representative color image of the Rachmaninoff Basin area of Mercury, created by my students using narrow band image data from the MESSENGER space probe at 430, 630, and 1000 nm. We stretched the color saturation and image contrast so that we could see differences between volcanic (yellow-orange) and impact (blue-violet) features.

My chemistry and STEAM students created an inquiry lab to study the variables involved in dyeing cloth, including the history, ancient processes, types of cloth, mordants (binders), types of dyes, and other factors. We also explored tie dyeing, ice dyeing, and batik and developed a collection of dyed swatches that we will turn into a school quilt. We also experimented with dyeing yarn with cochineal, indigo, rabbit brush, sandalwood, logwood, etc. and my wife crocheted a sweater from it.

2. My chemistry and STEAM students did a similar inquiry lab to test the variables involved in making iron-gall ink using modern equivalents. We studied the history and artistry of this type of ink (used by Sir Isaac Newton, Leonardo DaVinci, and many more) and tried to determine the ideal formula for making the blackest possible ink. We also created our own watercolor and ink pigments such as Prussian blue, etc. We used the inks/watercolors to make drawings and paintings of the history of chemistry.

3. My astronomy students used accurate data to build a 3D model of the nearby stars out to 13 light years. This lesson was featured in an article in The Science Teacher magazine, including a video of me describing the process.

4. My astronomy students created a video for the MIT BLOSSOMS project showing a lesson plan on how to measure the distance to nearby stars using trigonometric parallax. It is on the BLOSSOMS website and has been translated into Malay, Chinese, and other languages.

5. My earth science students learned how to use Mars MOLA 3D altitude data to create and print out 3D terrains of Mars.

6. My chemistry students created a 12-minute documentary (chocumentary?) on the history and process of making chocolate.

7. My 6th grade Creative Computing class built and animated a 3D model of the SOFIA aircraft prior to my flying on her as an Airborne Astronomy Ambassador.

Kasei_Valles-Mars-2

A 3D render of the Kasei Valles area of Mars, created by students as part of the Mars Exploration Student Data Team project. They learned how to download Mars MOLA data from the NASA PDS website and convert it into 3D models and animations, then created an interactive program on Mars Exploration which they presented at a student symposium at Arizona State University.

8. My science research class collected soil samples from the mining town of Eureka, Utah to see if a Superfund project had truly cleaned up the lead contamination in the soil.

9. My chemistry and media design students toured Novatek in south Provo, Utah and learned about the history and current process for making synthetic diamond drill bits. Another group videotaped a tour of a bronze casting foundry, while others took tours of a glass blowing workshop, a beryllium refinery, and a cement plant.

10. My astronomy students used infrared data from the WISE and Spitzer missions to determine if certain K-giant stars may be consuming their own planets. This was done as part of the NITARP program. They developed a poster of their findings and presented it at the American Astronomical Society conference in 2015 in Seattle.

11. My biology students build working models of the circulatory system, the lungs, the arm, and create stop motion animations of mitosis and meiosis. As I write this, they are learning the engineering design cycle by acting as biomechanical engineers to design and build artificial hands that must have fingers that move independently, an opposable thumb, can pick up small objects, make hand gestures, and grasp and pick up cups with varying amounts of water in them.

12. My computer science students, in order to learn the logic of game design, had to invent their own board games and build a prototype game board and pieces, write up the rules, and have the other teams play the game and make suggestions, then they made revisions. This was an application of the engineering design cycle.

13. My STEAM students designed and built a model of a future Mars colony using repurposed materials (junk), including space port, communications systems, agriculture and air recycling, power production, manufacturing, transportation, and living quarters. They presented this and other Mars related projects at the NASA Lunar and Planetary Science Conference in Houston.

These are just a small sampling of all the projects my students have done over the years. I have reported at greater length in this blog about these and other projects. My intent has always been to move students away from passive learning to active learning to inquiry/innovation. They often create models, build prototypes, collect data, or design a product and it is always open ended and student centered; even if I choose the topic of the project, they have a great deal of freedom to determine their approach and direction. There is never one right answer or a set “cookbook” series of steps, nor a focus on memorizing facts. They learn the facts they need as a natural consequence of learning about their project topics; by completing the project, they automatically demonstrate the required knowledge.

Mars Exploration main interface-s

My students designed, animated, and programmed this interface for their Mars Exploration project, then presented it at a student symposium at Arizona State University as part of the Mars Exploration Student Data Team program. They build 3D models and animations of Mars probes, such as the one of the MER rovers shown. In this interface, the Mars globe spins, and as the main buttons are rolled over, side menus slide out and space probes rotate in the window.

Some groups require considerable training and experience to get to this level of self-motivation and innovation, and some team building, communication, and creativity training may be required. Other groups move along more rapidly and have the motivation to jump right in. This means that managing such projects as a teacher can be challenging because every team is different. I find myself moving from being a teacher at the center of the classroom (a sage on a stage) where all students move along in a lock-step fashion to becoming a mentor or facilitator of learning (a guide on the side) as students move toward higher levels of engagement at their own pace and in their own way.

As classroom activities become more student-centered, I find it natural to tie in the Next Generation Science Standards. If I do an inquiry lab to test the variables that affect dyeing cloth, the answer is not known before nor the methodology. Students have to work out the scientific method or steps needed by asking the right questions and determining how to find the answers, or to design, build, and test a prototype product. Through this method they learn the science and engineering processes that are one dimension of the 3D standards.

Crosscutting concepts can also be explored more effectively through this method. Inquiry leads to observations, which should show patterns, processes, models, scale, proportion, and other such concepts, which are the second dimension of 3D science education.

This leaves the third dimension, which is to teach subject Core Concepts. This is where most of the misguided opposition to Project Based Learning comes from. Teachers feel that projects somehow take time away from “covering” all the standards. But if we want deep learning of the core concepts of a subject, we can’t expect students to learn them by using surface level teaching techniques that emphasize facts without going any deeper. If I do it right, I can involve many standards at once in the same project and not only meet but exceed the standards in all cases. I call this “standards overreach” and I will talk about this in more detail in my next post.

Element posters and virus models

Projects don’t have to be a elaborate and complex as the Mars project shown above. Here, my New HAven students have created models of viruses and mini-posters of chemical elements. The green plastic bottle to the left is a model of a human lung.

Read Full Post »

New Haven signs

New Haven Residential Treatment Center, where I now teach. It is located in a rural area near the mouth of Spanish Fork Canyon. It is surrounded by alfalfa fields and deer frequently walk through the school in the evenings.

With my performances in the musical over (see my previous post) and Christmas past, I redoubled my efforts to find another teaching job. By the end of 2017 I had about seven different interviews, some over the phone, a few in person. I thought they all went well, but not all of the jobs were equally attractive. Some would require my moving away from Utah, which I am reluctant to do. I like living here, with the great combination of desert and mountains, incredible geology and scenery (there are five national parks in Utah and two others just outside), and a wonderful mix of biomes, ecosystems, and weather. A science teacher’s dream-come-true! So I am loath to leave.

One interview was with Pearson Publishing to promote their new science curriculum, which would require frequent travel but allow me to continue living here. But I’m not much of a book salesman, having had a negative experience while in college selling books door to door in Phoenix during the summer. I wouldn’t want to do that again unless at the uttermost need. I had some teaching interviews with KIPP schools and elsewhere, but again there are none in Utah and it would require moving. Another job was for a new tutorial program, but it was only part time (I need full time) and I’m also reluctant to start a new job with a new school knowing how much is promised that never comes to fruition.

New Haven schoolhouse

The school building at New Haven RTC. I teach in the science room, which is the new addition right behind the pine tree next to the pond.

I looked for a variety of categories on every job aggregating website I could find, from Teachers to Teachers to Indeed and beyond. I looked for teaching jobs, curriculum development jobs, education consulting jobs, media design jobs, tutoring jobs, even substitute teaching jobs. These last two I didn’t pursue yet since I wasn’t quite that desperate, but I decided if I didn’t get an offer by the end of January I would start applying for these jobs, too.

One position I found was for a science teacher at a residential treatment center in Spanish Fork, about 20 miles south of where I live. I have taught at an RTC before and am familiar with how they work. Students with emotional and behavioral problems are sent to these centers (by parents, the courts, and school districts) as a last resort to provide them with in-house therapy while helping them catch up on school credits (which they are often behind on). Utah has a cottage industry of RTCs because the structure of our laws allows for lock-down school facilities as long as they have fire-safe zones separated by firewalls. I was called in for an interview and was impressed by what they are doing and felt the interview went very well. It happened on Dec. 16, so I wasn’t expecting to hear back immediately because of Christmas break. But once January began I hoped to hear back one way or another.

I followed all the requirements of Unemployment to apply to at least four employers per week (I actually did far more than that). I put myself on a daily time card to track the hours I spent, hoping that I could be productive in everything I did. I worked harder than on a normal job, averaging over 55 hours per week. But not much was happening. I was about to start subbing and finding whatever jobs I could, but knew if I did so it would take time away from looking for better jobs. It’s a kind of Catch-22.

BBIG Project Diagram-s

A schematic diagram of how a project would be organized and managed using the BBIG Idea structure. The entire organization from students on up will decide on the major projects for each year, and the Project Directors and Advanced Innovators will divide the project into separate pieces, such as videos, 3D models, games, etc. Innovator teams work with Master Educators to divide the project further into pieces that individual students organized into Apprentice Teams complete, based on continual formative assessments.

A BBIG Idea:

I continued to develop a business plan for creating an organization that would take Media Design and STEM professionals into schools as independent contractors, similar to some school to work programs. My idea is called the Black Box Innovation Group, or BBIG. It will create a non-profit that sends professionals into schools to work with their media design students to create non-profit educational products, starting with practical projects such as promoting Utah tourism through creating county videos. Each year I would add more schools, then build an organized training program, with graduated students (masters) working for BBIG to go back into schools to train apprentices (middle school students) and journeymen (high school students).

Competency based school challenges

My BBIG Idea will be a competency-based school program directed by outside professionals and Master Teachers (classroom teachers trained by BBIG). This diagram from the 2014 meeting of the Digital Promise League of Innovative Schools describes the challenges to adopting a competency-based curriculum, although it is a much needed school reform.

Students advance by mastering skills and participating in central journeyman level projects that show high competency. The central themes will be decided on each spring at a BBIG Idea Convention. Anyone in the organization could propose ideas at the annual conventions, and these would be focused on media design but with STEM themes. At first, BBIG would be supported by grants but would eventually fund itself through sales of its products. I worked out all the details, and even set up an appointment with the Small Business Development Center to look it over. The SBDC was very favorable on all but my funding model, as trying to continue an organization on grants alone isn’t very sustainable. I took a Saturday class at the SBDC to learn how to test the feasibility of my idea, and I took a continuing class on Thursday nights for how to create my own business. Although I haven’t moved further on this idea, I intend to pursue it through grants once I build more cache for myself through adding those three magic letters to my name and gaining the backing of a university.

If you want to learn more about the BBIG program, here is a PDF file you can download and view at your leisure:

BBIG presentation-s

Finally: Success

If my job hunting efforts had continued into February, I would have taken the plunge into starting BBIG while beginning to do tutoring and substitute teaching. But my job search efforts finally paid off. In mid January I interviewed with Heritage School, another RTC that is less than two miles from where I live. When I taught at Provo Canyon School 20 years ago, we did some joint training activities and classes with Heritage, so I was familiar with their campus and some of their people. The day after the interview they called me and offered a job. I told them I needed 24 hours to decide. With an offer in hand, I called up New Haven RTC and asked what their decision was. They had a couple of final questions for me based on my references from my former school, which I was able to answer satisfactorily. They offered me a job as well. After three months of no results, I was in the good position of having two offers to choose from.

I also weighed continuing my job search. It was near the start of a new semester and there would be some science jobs available at local school districts. Did I want to go back to crowded classes with over 30 students per class? Working in a district is a stronger position than being at a private school when it comes to applying for awards and grants. Finally, however, after much thought, I decided to accept the offer at New Haven. My feeling for their program was more positive and I felt I could work in their system more effectively.

I would be replacing a teacher who was leaving to become a stay-at-home dad. Over the years, he and his wife had sponsored 14 foster children and she had accepted a great job offer, so he was needed at home. I went in to the school starting a week before the end of the semester to observe and get prepared for the transition at the end of January 2018.

Making gak at NH

Making gak in my classroom at New Haven RTC. Because of the nature of our school and the students’ need for privacy, I cannot show faces or give names. It is nice to be back doing fun projects again, which I’ll describe in later posts.

I have been at New Haven since then, and I am used to the students and system. I feel that I am finally getting back on track creating new materials, blogs, lesson plans, and applications. I am writing blog posts again, creating new lesson plans, and planning ahead for what seems like the first time in a long time. I am innovating and creating again, and beginning to apply for awards and professional development opportunities. One thing I can’t apply for, however, is grants. This is a private for-profit school and almost all grants require the grantee to be a non-profit entity. I am moving forward and have been accepted into an online doctoral program in Educational Studies at the University of Northern Colorado, specializing in Innovation and Education Reform. I will talk about this more in later posts. This may provide further opportunities for grants.

As of today, May 21, 2019, it has been a year and a half since I was laid off at American Academy of Innovation and I don’t miss it. I do miss many of the students there, who were amazing, but I don’t miss the commute or the long hours or the stress that seemed endemic to that school. I have half the commuting time, and I get home now long before I would even leave school there.

I can focus on individual students and their needs. We have weekly treatment team meetings where we go over the therapeutic, educational, and social needs of each student. Think of it as a very detailed IEP that takes place every week. Our structure at school allows teachers to attend those meetings and be a full part of the team. I wish normal schools could do the same, but the intensity of how we do things couldn’t be replicated without quadrupling the amount we now spend on education.

Although I’ve now been here for 16 months, which is longer than I was at AAI, I’m not sure if I’ve yet recovered from the trauma of losing that job, even if it was a lay off due to financial issues. I still feel a need to cover my backside. I applied for over 60 jobs, interviewed for nine, and received two offers. That’s a lot of rejection, and it was hard to take day after day for three months. One thing that helped me was to see the movie The Greatest Showman (my wife insisted –she’s a big fan) and hear the song “This is Me.” It inspired me to write my own personal anthem as a way of thumbing my nose at all the detractors and naysayers I’ve had during my teaching career (and there have been more than a few) and to rise above the continued daily rejections. Here it is, for what it’s worth:

I Will Rise

Personal Anthem of David V. Black

They tell me my efforts are worthless,
I’m too old, obsolete, uninformed.
They say that my skills are now useless,
And ignore all the castles I’ve stormed.

But they’re wrong about me.
I’m afraid they won’t see
All the value I’ll bring to their schools.
Yet I won’t believe them,
As a teacher of STEM
I’ve learned to obey my own rules.

Though I may not be much in their eyes,
You can still count on this: I will rise!

I’m not falling down, I am leaping
Ahead of the pack, not behind.
Their negative thoughts won’t start seeping
To poison my thoughts or my mind.

Oh they won’t get me down,
And I won’t play the clown,
I deserve some respect for my strife.
Through the rest of my years,
I won’t give in to fears,
I’ll have joy throughout all of my life.

No matter how hopeless the prize,
There will be no mistake: I will rise!

I’ve taught classes from Boston to Bali,
Written blogs from the ends of the Earth,
Lead workshops for NASA in Cali,
And now you dare say I’ve no worth?

I’ve worked far too long to accept it
When you say that my best years are gone.
There is still much to see, still more to do
And I won’t quit until I have won!

Oh they’re wrong about me,
And some day they will see,
That I have so much further to go.
They will bow with respect,
Accusations retract,
And upon me their honors bestow.

Through the darkness I’ll reach for the skies,
And no matter the cost: I will rise!

I’m the teacher they thought to despise.
I will never give up: I will rise!

 

OK – so – I’m not exactly a great poet. But it encapsulated my feelings, and helped to keep me going. Despite daily setbacks and let downs, I had to keep going and believe that my efforts would pay off eventually. As an ancient king once said regarding his people’s attempts to escape from slavery:

I trust there remaineth an effectual struggle to be made.
– King Limhi

Or as Shakespeare put it:

Our doubts are traitors, and make us lose the good we oft might win, by fearing to attempt.
– Shakespeare, Measure for Measure

I had to believe that my attempts weren’t futile and set my fears and self-doubts aside. I kept trying, and it finally did pay off.

Now I can continue this blog and look forward to the rest of my teaching career. With my doctorate program I can finally join empirical research to the theories I’ve developed over the years based on my observations as a teacher. I can finish the books I’m working on and edit them until they are published. I can create a plethora of educational materials and follow up on all the ideas I’ve had. I’m no longer in job limbo. I am in recovery.

Read Full Post »

junk-hat

A hat created by Justin, one of my STEAM it Up students. It is made of upcycled and repurposed materials.

At the beginning of the school year in my STEAM it Up class I had the students vote on which of many possible projects they wanted to work on. The one unit they all agreed on was to make a series of sculptures or cosplay items out of repurposed, upcycled junk. I’ve been collecting materials for years, ever since I created my first “junk” sculpture at the age of 18. I’ve taught this unit three times before in Intersession classes and afterschool clubs when I was at Walden School of Liberal Arts. The results were mixed – the high school students did fairly well, but not so much the middle school students. It seems at that age students are much better at tearing things apart than at systematically planning how to put them back together.

junk-cat

Small junk sculpture of a cat, made by Emily.

My main reason for teaching the class was to actually use up the junk I’ve been collecting and clean out my workshop. Yet it seems I wind up with more stuff before than after – maybe because of the aforementioned “tearing apart” proclivity of middle school students; what was nicely compacted as old VCRs and DVD players is now a series of scattered pieces.

bracelet-and-diagram

A bracelet and a diagram, created for my STEAM it Up class.

So I was a bit reluctant to do this again and bring in boxes of materials that inevitably make a terrible mess in my classroom. But I also knew it could be fun and educational if done right, so I took the chance. I structured this differently than before: each student would need to produce three items. The first would be a small sculpture as a beginning exercise, something that can be easily held in one hand. The second would be a cosplay item or some type of costume piece or wearable sculpture or prop. The third would be a group project where all eight students would plan out a large-scale sculpture together. The second and third projects needed to be sketched out and planned in advance.

little-man

A little man, made from old keys and other recycled objects. Glued together with hot glue and E-6000 adhesive.

They came up with a variety of interesting sculptures for their first and second projects, as seen here. I am also including some of their sketches, although in too many cases they drew the sketches after they made the sculptures. Some of the sculptures involved LED lights, which took some planning and thinking through. The point is to teach them some engineering and materials science skills, and engineers plan everything out in advance. Some students resist this, as they see these sculptures as art forms, not engineering designs, and pre-planning seems to them to impede the creative process. Of course, without planning and thinking through how to attach the disparate materials together, their sculptures tend to fall apart. Glue alone can’t hold a load-bearing member like a leg or arm.

small-soldier

A tiny soldier, made by Noah for my STEAM it Up class.

Which is why we are doing a group project. We decided to build a futuristic Mars colony city (to go with our school’s overall Mars Exploration project – more on this coming in my other blog at http://spacedoutclassroom.com).

space-ship

A space ship sculpture, made from recycled motherboards and other electronic junk.

Two years ago, we had someone contribute a lot of materials to Walden School that were from a doctor’s office or scientist’s lab. I still have no clue what most of the stuff was even for – some of it is probably valuable as antiques. One item was a still for making distilled water, but bought in the early 1970s because of its horrible avocado green color scheme. I managed to get a chemistry professor at Brigham Young University to take it off my hands. But the rest of the stuff was of little use. One item was a plastic autoclave, with multiple levels for sterilizing surgical equipment. There were also glass containers for storing or cleaning microscope slides (I think – based on similar plastic items I’ve seen in the Flinn Scientific catalog).

flying-saucer

A flying saucer that lights up, made by Sam for my STEAM it Up class.

The autoclave looks like a domed city, something out of Isaac Asimov’s Caves of Steel series of books about the android R. Daneel Olivaw and Detective Elijah Bailey. We were looking at the autoclave and other materials and “noodling around,” which is an important scientific and engineering creative process: putting things together that don’t normally go together and seeing what would look good and work toward a harmonious whole. We came up with the glass containers as pillars for the autoclave layers. One of the students suggested offsetting the layers. I sketched these ideas out on my whiteboard, and we worked through how to attach everything together using metal piping from old 1980s brass and glass furniture with bolts and L-brackets, and wire to tie the pillars together to make the whole thing structurally sound.

bracelet-with-led

A steampunk bracelet with LED light, made by Sam.

Teams of students took different layers. The bottom layer (Level 1) will be the industrial and manufacturing center, so one team is making industrial-style equipment and buildings that look like factories and power plants. One team is doing Level 2, which is the main residential sector. One team is doing Level 3, which is the administrative, shopping, hospital, and school level. They built a school from an old calculator and wanted the holes to become solar panels. I remembered having a folder with a shiny metallic-blue cover, so we cannibalized it to become the solar cells. Level 4 is the park, university, and upper class residential sector, and the dome will have spaceports, defense, and communications centers. Already the pieces are shaping up. This is exactly the engineering and materials science I had hoped for when we started this unit.

magic-wand

Magic wand, made by Sarah for my STEAM it Up class.

We are now beginning the construction of the main city levels, but Winter Break has halted the process. It will be our last project for the STEAM it Up class. It will sit upon two wooden plaques, again donated from the doctor’s office, and we’ll create smaller domes for hydroponics and farms, with small Mars rovers (already made by one student who is great at miniaturized sculptures).

stamp-and-ring

Small sculptures created by my STEAM it Up students: a stamp and a ring.

We’ll make Mars landscaping from paper maché and HO scale model train decorations. I also hope to put wires up through the support shafts and add LED lights to the city. The final city will be quite heavy and hard to move around, so it will stay in my classroom and make a great decoration for my newly completed lab. We’re photographing the construction process, I’ll interview the students, and we’ll add all of this to our ongoing Mars project documentary video. I’ll write another blog post in January when we can show the finished sculpture. I would also like to create a virtual 3D model of the finished city so we can animate and label the parts.

mars-colony-sketch

First drawing of our Mars colony, using parts from an autoclave as the levels of our city and glass microscope slide cleaners as pillars.

We still need to pick a name for it. Looking up names for Mars in various cultures, and adding translations for the word “city,” I come up with some possibilities: Aresdelphia, Al-Qahira Madina, Harmakhis Delphi, Hradelphia or Hrad K’aghak’, Huo Hsing Shr, Ma’adim Delphi, Kaseishi, Mangalakha, Martedelphia or Marte Cuidad, Mawrth Dinas, Nirgal Alu, Shalbatana Alu, Simudelphia, Labouville, and Tiuburg. We’ll have to vote on it.

mars-colony-first-attempt

Even without glue or bolts, the layers stack up fairly well in this first attempt to build the Mars colony city. We decided to use two of the boards instead of one so we could add more landscaping and farming domes using HO-scale model railroad decor.

Read Full Post »

aai-video-frameIn my last post, I said goodbye to Walden School of Liberal Arts after teaching there for six eventful years. My original plan was to spend a year in Washington, D.C. as an Einstein Fellow, but despite making it to the final round, I was not chosen. My Plan B was to go back to school for a PhD, but even though I was accepted to the STEM Education program at the University of Kentucky, I deferred for at least a year so that I could earn up more money for the move. I interviewed at four schools and received two offers, and accepted the offer at American Academy of Innovation.

aai-charter-school-rendering-s

Illustration of American Academy of Innovation

It is a brand new charter school with a mission for project-based learning, stem education, and international partnerships. They started building it in January and the contractors were still putting in finishing touches as we met for the first time as a faculty on August 15, 2016. Our Director is Scott Jones, who has a great deal of experience directing and working in charter school environments. The teachers have been hired from all around, some from Texas, the East and West Coasts, and several from Utah, Idaho, and Alaska. It appears to be a highly creative group of teachers.

aai-innovation-orange

Innovation Orange: American Academy of Innovation on my first day there.

We took a tour of the building and saw what it will look like in the next two weeks – except for my science room. It hasn’t been finished, partly because of last minute changes to the water and gas lines, partly so that they can get my input. I have since designed the lab, with four student stations, a fume hood and teacher demo desk, and lots of cupboards for storage. As I am writing this (November 14, 2016), the contractors are building in the lab stations – hooray! – and I am teaching out of the library.

faculty-touring-school

Faculty of American Academy of Innovation touring the school; August 2016.

For our first two weeks we met as faculty to prepare and plan. We revised the school’s vision and mission statements. Here are the new ones:

The Vision of American Academy of Innovation is to empower the individual mind to improve the world.

Our mission statement:innovation-defl-a

The American Academy of Innovation combines academic fundamentals; career, technology, and 21st Century skills with international and community partnerships through project-based learning to ignite an innovative mindset within the individual and society.

I most like that our overall goals are to ignite an innovative mindset and to empower the individual to improve the world. I have attended many educator conference sessions on Problem-Based Learning (PBL), so I volunteered to share what I’ve learned with the rest of the faculty and to go through the eight characteristics of PBL, working through a potential large-scale problem as an example. I chose an expedition to Mars (which I’ve used as an example all summer at meetings for potential parents and students). Other teachers volunteered to share their expertise, so we trained each other. Scott also brought in some experts from other charter schools to talk about how we will implement special education and organizational culture. We took time to plan out what our first few days would be like as we started training our new students toward project/problem-based learning.

aai-lobby-august-2016

Lobby of American Academy of Innovation; August 2016. We still had much work to do putting together tables, chairs, desks, and filing cabinets.

In addition to holding daily meetings, we helped to put together chairs, desks, filing cabinets, and other furniture. Parents and students came in to help, and by the time the first two weeks were over, the school was shaping up and ready for occupancy.

first-day-of-school

AAI students meeting in our gym for introductions on the first day of school; August 31, 2016.

On August 29, we held our first day with students at the school. These first two days were to be an orientation to get the students excited about being here and help them get to know us and each other. Some had come from neighborhood schools and knew each other before, but some had come from charter schools or homeschooling. We met in our new gymnasium, and discovered immediately that the acoustics in there are terrible. It is basically a hollow concrete shell, so sound bounces all over the place and the small portable PA system wasn’t up to the job. After introducing the staff, we divided the students into groups and had them rotate through four sessions each day for the first two days.

marble-roll-1

Marble rolling group activity. Students use the pool noodles as channels to roll marbles from a starting line into a bucket. It takes teamwork and problem-solving skills.

My groups were about problem solving. Our first day I did the activity of using swimming noodles cut in half to roll marbles from a starting point into a bucket. As the noodles were short, they had to develop teamwork to move the marble along without dropping it. It was interesting to see leadership beginning to emerge from some of the students. Most of the small groups were eventually successful. It was a lot of fun.

marble-roll-2

Rolling marbles into a bucket as a group problem-solving activity.

Our second day, I ran an activity to make a simple paper helicopter based on Da Vinci’s helix machine. Students were asked to use inquiry to vary the shape of the basic helicopter and try different things. After experimenting and testing in a classroom, I had them drop the helicopters off our balcony in the main lobby and tried to photograph and videotape the results.

helicopter-drop

Testing our paper helicopters. What you get depends on what you’re testing.

Other groups toured the school, took polls for what our new mascot and school colors would be, and many other things. Overall I think we managed to convey a sense of excitement, innovation, and inquiry to the students.

making-marbled-paper

Making marbled paper. Oil paints are diluted with mineral spirits, then dropped into a metal pan with an inch of water in them. The oil/spirits mixture floats on top and can be lifted off by lying a piece of sketch paper on top.

On Wednesday, August 31 we held our first regular classes. We have four periods per day on an A-B schedule; each class is 90 minutes long. I’m used to 70 minutes, so I have to pace myself. Our school day starts at 8:30 and ends at 3:30 with 50-minute lunches, so it is a longer day than I’m used to. My schedule for A days is to teach 3D Modeling during first period to about 25 students (good numbers – I’ve been talking this up all summer). We didn’t have computers to work with at first, so I had to do preparatory things such as going through Drawing on the Right Side of the Brain activities and teaching orthographic and perspective drawing skills. Second period I have STEAM it Up, with only eight students (students didn’t quite understand what this class would be about, but that’s OK – a smaller group will be more mobile and experimental). My third period class is chemistry, again a challenge to begin with since I had an empty room and no sinks or lab stations. I started with six demonstrations using household chemicals and had them make observations. I had 12 students but this has grown to 16. My 4th period class is 8th Grade Science to about 20 students. I decided since the new SEEd standards are being implemented fully next year, we might as well implement them now at AAI. We created marbled paper on the first day.

astro-levels-activity

Astronomy activity to determine the correct order of levels of magnitude in the universe. It starts with multiverse at the top and ends at quarks at the bottom.

On B days (Tuesdays, Thursdays, and alternating Fridays) I have the following schedule: First period (B1) is astronomy to 7-8 grades. I began with my scale of the universe activity to arrange strips of paper in the right order from largest to smallest scale. This helps me see what they already know visually while providing a setting for the class. Second period is Innovation Design, basically my MYP Design class again for 7-8 grade students. We began with the bridge building activity that I modified from Wendi Lawrence’s spaghetti tower design challenge. Even with 90-minute classes, the student groups didn’t get as far as I would have liked, with only one truly successful group. I can see we have some work here, partly because the students don’t know each other and aren’t used to working together. My B3 class is 8th grade science again, and then I had a prep period B4.

the-big-sit-down

The big sit down: all our students lined up, then sat down using the student behind as a chair. I kind of worked . . .

Part way into September, one of our teachers, who is from China, found out he had a conflict with his Visa (he had not renewed it), and so was unable to work for the rest of the semester. We found substitute math teachers for his math classes, but no one to fill in for his two computer science classes. I volunteered to give up my prep on B4 to teach the computer science class. It has been a challenge teaching straight through every day without a prep period, especially trying to stay up on grades. Because of our lack of computers, we had to have the students pair up. He started with Scratch, so I was able to transition the students over to my own way of doing things without totally replacing his structure. I also want to implement using AppLab after Scratch, then move on to Python.

building-bridges

Bridge building design challenge for my Innovation Design class. They must span 12 inches and make a bridge strong enough for a Matchbox car to be pushed across. They are given 30 pieces of spaghetti, 10 small gumdrops, and one sheet of paper.

When you add to this that I now have a 45-minute one way commute it can be exhausting. Much of my after school time has been spent in weekly faculty meetings or designing my science lab or putting together the order for initial equipment, lab supplies, and chemicals. We purchased 27 Dell laptop computers, so I’ve also needed to spend time getting software installed including Daz3D Bryce, Stellarium, Gimp, Sculptris, Blender, and others as well as getting the 3D printer up and running. I come home and crash each evening. But slowly, day-by-day, we are making progress and the students are beginning to develop 21st Century skills for collaboration, communication, and creativity. It was a rocky start, but we are almost ready to implement the Big Project.

pouring-sidewalk

Our school was still under construction during the teacher planning weeks in August, but by the time students started we were ready. Except for my science lab, which was completed in November.

We identified four possible Big Projects as a faculty and had the students vote on which one they preferred. My descriptions were as neutral as possible because I didn’t want to be accused of influencing the vote. Except, of course, I may have sweetened the well by using an example of a Mars expedition during our summer meetings. The vote was to do a Mars expedition or Mars exploration theme for our project. I will report on this more in my http://Spacedoutclassroom.com blog.

science-room-august-2016

My science lab at the beginning of the school year. A white board and projector, but that’s about all. It looks much nicer now!

I’ve never worked so hard, and my health is probably suffering as a result. I’m not as young as I once was, and some days I truly feel it, but it has been an incredible ride so far. Over Winter Break I will be reporting on all that we have done in my classes on my two blog sites, so stay tuned.

right-side-of-brain

My 3D students on the first day of school. By this time we had chairs, but no tables or desks. So we handed out clipboards to each student. Here they are doing an drawing lesson where they turn a photograph upside down and draw what they see instead of drawing a face. They do a better job this way.

Read Full Post »

Walden School

Walden School of Liberal Arts in Provo, Utah

The past month has been crazy busy as I’ve prepared for my new teaching job at Walden School of Liberal Arts in Provo, Utah. I had intended on writing at least six blog posts in August and interviewing at least one person, but didn’t do any of it; instead, I’ve been writing curricula, lesson plans, preparing my classroom, and going on a four-day backpacking trip with my students to the high Uintah Mountains, up past Mirror Lake to Naturalist Basin. My legs are still recovering. Now this week has begun our first week of classes: I am teaching two sections of Honors Chemistry and one section of Astronomy on Mondays, Wednesday, and Fridays and one section of Computer Technology and one of Multimedia on Tuesdays and Thursdays. I’ll probably also pick up a Video Production class afterschool as well on those days. So far we are three days into the school year and things are going well.

My chemistry and multimedia students will be helping with the Elements Unearthed project in much the same way as my Media Design students did at MATC, except I am now at a school that actually believes in expeditionary learning (field trips) and project-based learning (PBL). Plus having dedicated chemistry students will help improve the accuracy and relevance of the student videos. Here’s what they are going to do:

David Black classroom

My classroom at Walden School

During the first term, each student will select a topic from one of four categories: elements, materials, energy processes, or the history of chemistry. They will conduct background research and develop an extensive set of notes with references, which they will condense into some form of print media, such as a poster, newsletter, brochure, etc. which they will convert to .pdf format. They will act as guest hosts of this blog, each one taking a turn to write a post entry about their topic and attaching their .pdf file to it for all to see.

During second term, they will come up with some sort of demonstration that relates in some way to their chosen topic, and practice it in class, then on a Friday in November we’ll take the whole class downstairs to the elementary classrooms (Walden School is a K-12 Montessori school) and present their demonstrations to the students, as well as handing out a simple worksheet or activity the students can take home. The chemistry students will also present their demonstrations to each other just before winter break and receive feedback.

David Black's Classroom

My classroom again

During third term, the chemistry students will add a Powerpoint or Keynote presentation or a video to their topic, which will be presented to their peers and added to this blog site. They will also present again to a different elementary class.

During fourth term, they will present their demonstration, Powerpoint, video, etc. to the public and their parents at a Back-to-School Science Night at the end of April or start of May. We’ll videotape the proceedings and add the videos to this blog as well.

This may seem like a huge project (and it is) but I’ve done all of this before when I’ve taught chemistry at Juab High School in Nephi (except for the media elements – that comes from MATC). Those students who wish can utilize the footage and photos I’ve already gotten for the Elements Unearthed project to do their element or material reports. They can also compete in the Chemical Heritage Foundation’s “It’s Elemental” video competition. My multimedia students will help on the longer videos I’m creating for this blog, YouTube, and iTunes (we’ll set up the iTunes account in our Computer Tech. course).

So you see, I have landed in an ideal situation for classes that I love to teach coupled with a great group of students and an environment that works perfectly for this project. I’m very excited to see what will come out of it. At the very least, this blog should be quite a lively place.

Read Full Post »

This morning I accepted a job offer to teach full-time at Walden School in Provo, Utah. (here is their website: Walden School Website). I will be teaching a combination of chemistry, earth science, and multimedia courses at the high school level. Walden is a small charter school that follows the Montessori philosophy of providing a rich learning environment and letting students have a large say in the direction and content of their education. This happens to coincide very well with my own philosophy, which I have stated here before, that science classrooms need to go beyond hands-on learning and teach students how to be creative contributors to their own education, through building their own science content or conducting their own experiments.

Materials for Mars 3D activity

Materials for the Mars 3D activity

In fact, the fit for me is so good that if I had sat down and designed the perfect situation for what and how I like to teach, it would be very similar to what Walden School has to offer. And it will be ideal for The Elements Unearthed Project. It will provide a base of operations, so to speak, from which to apply for grants and gain support as well as a group of dedicated, creative students to work with. Teaching chemistry and earth science in addition to the multimedia I’ve taught for the last ten years will also allow me to cross-pollinate the classes so that students can do diagrams, animations, and videos for their multimedia class but also get credit in chemistry or earth science. This is the way project-based-learning (CBL) can be more efficient as well as more effective.

I’ve struggled this last year since returning from my fellowship at the Chemical Heritage Foundation to make financial ends meet by creating Business Profile Videos for clients. The economy being the way it is, all the businesses we’ve contacted love the idea of a YouTube video advertising their products or ideas, but hardly anyone can afford to pay what the videos are actually worth. So for the last two months I’ve been searching for full-time and part-time jobs; it takes a great load off my mind to know I will have a regular income. Although my days will now be spent teaching, I think the overall pacing of the project can increase; I no longer will have to spend all my evenings working on business videos and can devote almost as much time as now to the video episodes I’ve already filmed.

It will also be great to get back to science teaching. I’ve missed it, and I’m looking forward to dusting off and updating some of the great lesson ideas and activities I’ve learned from NASA and elsewhere. I can bring back the Elementary Science Tutorial Program I began at Juab High School so many years ago. Now my students can build the 3D model of the nearby stars I developed for my astronomy classes at Provo Canyon School. Now the Mars 3D project I developed at MATC can be shared between multimedia and earth science classes. Now The Elements Unearthed Project will be able to draw on students from multiple disciplines in a school that believes in student creativity, project-based teaching, and expeditionary learning.

Table top star model

Table-top 3D model of the nearby stars.

Instead of the factory model, one-size-fits-all style that is killing our public high schools, where subjects are fragmented and divorced from each other, I believe in teaching holistically and individually and expecting students to achieve highly creative work. Now I’m going to put this philosophy to the test.

Read Full Post »