Feeds:
Posts
Comments

Posts Tagged ‘steam education’

Further Adventures in Dyeing

Me in sweater - 7-4-17

Sweater crocheted from 100% wool yarn dyed with natural dyes, including rabbitbrush, madder root, cochineal, indigo, walnut shells, sandalwood, and logwood.

Part I: Woad is Me

In my STEAM it Up class at American Academy of Innovation we have been inquiring into the best formulas for dyeing cloth using natural dyes. I’ve reported on this several time in this blog before, and this will be my last post about it (at least for now). I wanted to describe our follow up efforts and present our final results.

Not woad - but pretty

What I thought was woad – but now plainly isn’t. Woad has yellow flowers. This is quite pretty, though.

The first note I have to make is that I was mistaken in my post about woad. The plant that I had accidentally found and identified as woad is NOT woad. I’ve been keeping an eye on the plants as I drive past the spot on Mountain View Corridor in the southwest corner of Salt Lake Valley, and waiting for them to bloom in May so that I could make a final positive identification. But, alas, woad is me, the blossoms were red and pink – and quite pretty, hanging on long stems in small pendular bell shapes. However, woad has yellow flowers. This is not woad, but a closely related species (the leaves and other features are identical).

Real woad

This is real woad. Notice the yellow flowers and green leaves with white vein clustered at the bottom.

That led me to go on a hunt for true woad, and I soon found it – just five miles further south along Redwood Road across from Camp Williams, by the Herriman Pit. There were plenty of other yellow flowered plants, but these I knew were clover. Then, at this site, along the fence, I saw some plants with larger yellow flowers. I stopped and looked and sure enough, it was truly woad. I am including some photos so you can see it, and I will add a retraction to my previous post about woad (A Woad Twip).

Real woad 2

Real woad, again. This was located near Camp Williams on the other side of Redwood Road in Utah. It is a Class 3 Invasive Weed and has gotten out of control in northern Utah.

I did not have the time left in the school year to go through the difficult extraction process, so I merely noted where the plants were. Two of my 8th Grade Science students had written a report for their Environmental Science Project about invasive species. The project required an action plan, and for their action they travelled down to this spot several days later and pulled up all the woad plants they could reach on the road side of the fence. There are still many more further in that I will harvest in September when the indigotin is the highest and have my chemistry students do the extraction. I still have the extracted powder from the non-woad plants – we will experiment with it this fall to see if it, too, is a dye since the plants appear to be related.

Part II: Born to be Purple

Purple everywhere

Our experiments with logwood yielded this beautiful variegated yarn – and lots of purple dye.

We received our money for the Classroom Grant from the Utah STEM Action Center in early May and sent off our order, which included additional yarn skeins (Kona sports yarn, 100% Merino wool). It also contained bolts of silk and linen as additional fabrics to experiment with (more on these results later). We also ordered a package of a new dyestuff: logwood.

We looked up instructions for basic dyeing with logwood and followed them as our first experiment. It called to pre-mordant the wool in alum, which we did, and to use about the same weight of logwood chips as the yard we were to dye. This seemed excessive, so we used have as much logwood by weight as the yarn. We added about 750 mL of boiling water to the logwood chips as per instructions and soaked them overnight, then simmered the chips and solution for two hours. After filtering out the solution, we placed half the skein in the solution so that we could variegate the yarn for more interest and boiled it. After an hour, the yarn had turned a very dark purple. We turned the skein around (a messy process – do these sorts of things in a sink if you can, or in a waterproof container) and boiled the other end for only 15 minutes, which provided a nice lavender, moving the boundary between the colors in and out to get a gradient of color. After rinsing and washing, the dark end was still very intense purple, as you can see in the photos.

Logwood comes from Central America and was highly prized because, with its dark purple color, all it took was an overdye with a yellow color to produce black, which is a hard color to come by for natural dyes. Keep in mind that in Europe, the only reliable purple dye (more of a burgundy) was the famous Tyrian purple made from the Murex sea snail, which was very expensive. Now we have a reliable (and powerful) New World purple.

We were left with a lot of dye solution. I even collected the rinse water from the sink and saved it in an aluminum foil pan, which was still intense purple. Unfortunately, I left the pan over the weekend and discovered that logwood solution is acidic and reacts with aluminum. I came back on Monday to find purple solution all over the cabinet and the tile floor (Note: Never have carpet in a science classroom). It was quite a clean up job and involved lots of paper towels and bleach. I added more water to the logwood chips and boiled it some more and still got a deep purple. This stuff just won’t quit. Now I have about 1.5 L of logwood dye solution left even after using it for several other experiments.

LInen and silk-rabbitbrush

Silk (left) and linen (right) dyed with rabbitbrush. In this case, the dried blossoms were used, which I collected and dried last fall. You can see that both fabrics accept the rabbitbrush well using alum for a mordant.

We experimented with using silk and linen, and both accepted the logwood well. We tried overdyeing with rabbitbrush (our free go-to yellow dye) and it created a kind of sickly purplish grey color – not my favorite, but interesting if you’re into grey. We did not experiment with saddening or gladdening the color. The literature says that adding even a small bit of an iron compound to logwood will turn it a dark grey. That’s an experiment for another time.

 

Sandalwood results

Sandalwood dyed on cotton with modifiers added. On the top right, it is plain sandalwood using an alum mordant. On bottom right, tartaric acid (cream of tartar) has been added to lighten (gladden) the color. On top left, tin has been added as a gladdener. On bottom left, iron (II) sulfate has been added to sadden (darken) the color to an interesting reddish grey.

Part III: Modifying Sandalwood

Sandalwood was another natural dye we did some experiments with before we ran out of yarn several months ago, and a team of students had experimented with saddening and gladdening the sandalwood using iron (II) sulfate and cream of tartar, respectively. Iron turned the sandalwood from brick red to grayish brown, and cream of tartar lightened the brick red to more of an orange. Now that we had more wool, I wanted to dye a skein of it with sandalwood. I had read that copper compounds also make an interesting modifier for sandalwood, so we dyed one end of a skein in a 500 mL beaker with un-modified sandalwood (after pre-mordanting the yarn with alum) and the other end in a 500 mL beaker with sandalwood modified with a small amount of copper (II) nitrate. It turned the brick red into a pleasant reddish brown, a bit nicer than our experiments with walnut shells had produced.

Sandalwood process

Skein of yarn being dyed with sandalwood. The yarn is first boiled in an alum solution as a mordant (a metal salt that helps the dye molecule bind with the fabric), then we added copper (II) nitrate to the sandalwood at left, which saddened the color from brick red (right) to red-brown. The sandalwood had been filtered to remove the dye chips, then the solution boiled with the yarn dipped in it for about one hour.

Sandalwood skein

100% Merino wool dyed with sandalwood after it has been rinsed. The yarn was then washed in a machine on gentle cycle and allowed to dry in the air. I like the brick red and the brown-orange hues.

Part IV: Making a Sweater from Our Results

One of the points of this STEAM it Up class is to create final works of art from our investigations and projects. I now had eight different skeins of yarn, each dyed with a different natural dye using a variety of processes. My wife is excellent at crochet, and she volunteered (with some strong hinting from me) to crochet these skeins of dyed yarn into a sweater. She had never attempted a sweater before, and looked up patterns, made careful measurements of me (this was tricky because I have been losing weight), and set to work. First, she had to untangle the washed yarn and roll it into balls for more convenience in crocheting. Then she built the front and back pieces, counting carefully to make sure there were the same number of rows of each color. She completed these parts by March as a birthday present. Once we had the new colors, she completed the sleeves and sewed the pieces together as a Father’s Day gift.

David Black in sweater

David Black in the finished sweater. It is very comfortable. I have enough yarn left for my wife to crochet a beanie and maybe a scarf . . .

I presented our project at the STEAM Action Center’s Best Practices conference on June 21 at the Utah Valley Convention Center and had about 40 teachers attending. I wore one of my ice-dyed shirts, then the sweater over the top, then my Tie-dyed lab coat over the sweater. It was a bit warm, but during the presentation I did a little strip tease to show them the results. I also displayed other shirts, the yarn balls, and cloth swatches we’d made in the class for our experiments. The presentation went over well, and several teachers complemented my wife on her sweater design. It fits perfectly, and is a very comfortable sweater. Here is a photo showing what the different bands are dyed with.

Part V: A Quilt and Some Viking Dye Ideas

I had students in the STEAM it Up class who were experienced at making quilts – two of them even had their own quilting frames. Quilting is quite a big thing in Utah. As part of these continuing experiments, we have amassed quite a few swatches of cotton, silk, and linen fabric dyes various colors. I have the idea to create a patchwork quilt in the form of our school logo, with correct colors. We haven’t pursued the quilt project yet – too little time left in the semester. Another project for next year. We still haven’t gotten a good green, which is one of the colors in our logo. We’ve overdyed rabbitbrush yellow with indigo blue and gotten kind of a mottled olive green, but nothing really bright.

Stack of swatches

A stack of dyed cloth swatches – the results of our experiments. I hope to have them made into a patchwork quilt in the form of our school logo. On the right are our experiments with pyrography (wood burning), which the students got pretty good at.

Then I had a meeting at the Natural History Museum of Utah to plan out some professional development workshops in the fall (incidentally, one of them will include parts of our dye lab) and was allowed to browse through the museum on my way out. There was an interesting display of Navajo and Ancestral Puebloan fabrics and dyes, and a visiting exhibit on the Vikings that was fascinating. They had one display showing green dyed wool fabric, which was made from woad overdyed with weld (a yellow dye) and was bright green. Or maybe the other way around – the display was vague on that. So now we need to get some weld and use it with our own woad and see what we get. Another experiment for another time.

Sweater with labels

The finished sweater: The yellow at the top is rabbitbrush, the light orange is madder root, the deep red is cochineal in its natural color, the light purple is cochineal with some baking soda added (a base), the light blue is indigo, the yellow-tan to brown at the top of the sleeves is walnut shells mixed with rabbitbrush (in two separate beakers), the brick red is sandalwood, the bright red is cochineal again, and the deep purple at the bottom of the sleeves is logwood.

Part VI: More to Come

This is the fun part about STEAM education, project-based learning, and inquiry science: there is always more to learn, more variables to test, more experiments to refine. I’ve spent a great deal of blog space here just describing one continuing lab on dyeing cloth, but there are so many more ideas for combining the arts and history with STEM.

This post is overlong already, so I will wait for a later post to reveal our final results from the entire year’s worth of dyeing. I still need to talk about our year-end STEAM Showcase, which I will do tomorrow in my next post. Then it’s off to Indonesia on Thursday, which will require a long series of posts, if all goes as planned, so you may have to wait until September before I can return to give the dye lab results. I’ll write up a complete PDF you can use.

Read Full Post »

I’m taking a break from reporting on my preparations for my Teachers for Global Classrooms trip to Indonesia to bring you up to date on activities in my STEAM it Up and Chemistry classes, so that I can maintain some semblance of chronologic continuity.

Ice dye shirts 1

Ice dyeing creates intense, random colors.

Once we finished our unit on steampunk sculpture and cosplay costume creation, we began ramping up for the concluding section of our dyeing cloth lab in the STEAM it Up class. To get the students back in the mood, I introduced them to tie-dye and all of its STEAM applications. I’ve reported on how to do tie-dye in previous posts, so I won’t describe what we did again here. We did add a new wrinkle to the process by trying out a different type of dyeing using ice to randomize the colors. This is called ice dyeing, and you can find many beautiful examples online. The colors tend to be much more intense (because the dye powder is less diluted by the ice).

Here’s how to do it:

Adding dye powder

My STEAM it Up students adding tie-dye powder over the ice layer. The T-shirts and other cloth items are scrunched up on a tray under the ice.

First, you find a tray or grate or sieve of some kind that can fit inside a waterproof container, such as a plastic storage box. The grate must have holes to let water through and be raised a few inches above the bottom of the container so that the cloth won’t be sitting in the melted ice water.

Second, you need white or near-white cloth such as T-shirts or aprons or socks. These need to be pre-soaked in washing soda (sodium carbonate) dissolved in warm water. I use about a cup (250 mL) of washing soda to a sink full of warm water. Soak the cloth for at least 15 minutes, then wring out most of the water so that the cloth is wet but not dripping The cloth pieces or T-shirts then need to be wadded or scrunched up randomly and laid in the tray next to each other tightly enough so that they will remain somewhat folded up.

Ice with dye powder

The ice with a completed layer of dye powder. I demonstrated the process at the bottom with a spectrum of colors (and two shirts underneath). Students die the middle and top. Where complimentary colors are mixed, as in the top right, the results were more muddy. Yellow needs to be given more room since any other color will mix in and darken it.

Third, ice or snow is layered on top of the cloth or shirts. We simply raided the faculty lounge refrigerator’s icemaker and poured the ice on top of the cloth. It needs to make a fairly complete and even layer with no holes. We did this in May or we would have gone outside and gathered snow for a finer, more complete layer.

Fourth, tie-dye powder (we used Procion MX dye powder ordered from Dharma Trading Company) is spooned onto the ice or snow. This will use a lot of dye powder, so go sparingly and try to make a rainbow or spectrum pattern, with analogous colors next to each other instead of complimentary colors. Otherwise, the opposite colors will mix and you’ll get muddy results. There is some good color theory that can be taught here.

After the ice melts

To keep the T-shirts from sitting in the muddy melt water, the tray they are sitting in must be raised out of the water. I placed this tray on top of some funnels I use for tie dyeing. This is what the shirts look like after the ice melts. The shirts must sit for 24 hours with a lid on the container before rinsing. By scrunching up the cloth, and by the mixing of colors as the ice or snow melts, the final shirts have bright, random colors.

Finally, put a cover on the container and let it sit overnight undisturbed. It must be airproof, as the dyes need wet cloth and about 24 hours to set in. The colors will mix in the melt water to make a dark olive or brown color that can be saved for other dyeing. The shirts are then rinsed out in a sink with running cool water until no more color rinses out of them. They can then be washed with non-bleach detergent on gentle cycle and dried normally.

Ice Dye shirts 2

Ice dyed shirts.

Here is a photo of the results. Since some of my students forgot to bring their own T-shirts, I brought in all the old T-shirts I could find. Some of them had paint on them or were buried at the bottom of my drawer and hadn’t been worn in years. Now they have a new lease on life and are my favorite tie-dye shirts. Over the years, I’ve built up quite a collection, but these have the most intense colors.

Me in ice dye shirt

Here I am wearing my favorite ice dyed shirt. Notice how bright the colors are, but it does use up a lot of dye powder.

 

Read Full Post »

dyed-yarn-balls

Dyed merino wool yarn using natural dyes. Top left: Rabbitbrush. Top right: Cochineal treated with ammonia. Bottom right: Indigo. Bottom center: Cochineal treated with citric acid. Bottom left: Madder root.

As a follow up to our inquiry lab to develop the best formulas for dyeing cloth with natural dyestuffs, I ordered some Kona 100% merino wool yarn and several yards of untreated cotton fabric from Dharma Trading Company along with indigo, cochineal, sandalwood, and madder root dye powders, and some mordants and other chemicals needed for these dyes.

As we finished up before Winter Break, I started testing these dyes and experimenting with variables to get an initial feel for how well the yarn and cotton work. My first test was rabbitbrush, as I had collected boxes of flowers before the color completely faded in October. I simmered a skein of yarn in aluminum sulfate (alum) powder as a mordant for an hour while boiling the rabbitbrush blossoms, then transferred the hot yarn into the dye bath. It accepted the color nicely.

Next came madder root. I used the same mordant bath and prepared a dye bath by soaking the madder root bits directly in hot water and letting it simmer while the yarn was in the mordant bath, then filtered the madder solution through a sieve before dyeing the yarn. The color did transfer, but was lighter than I had expected but a very nice light salmon orange. I used the same solution for about two feet of the cotton, but it turned out even lighter. Increasing the concentration of the dye bath didn’t seem to help.

cochineal-dyeing

Dyeing With Cochineal: The dye bath is bottom left. I crushed the cochineal shells in a mortar and pestle, then placed them in the sieve (top center) and boiled in the hot water. The yarn is simmered in the mordant (alum powder – to the right), then simmered in the dye bath, then rinsed out (in the sink in center).

With some confidence that the wool yarn was working well, I crushed some cochineal shells in a mortar and pestle and placed them in a sieve and the sieve into boiling water to make the dye bath. This was to prevent the shells from sticking to the yarn, which would have been hard to get off. I wanted to make a multi-colored skein, so I dyed part of the skein in plain cochineal, then added citric acid to the dye bath which made it turn bright red – the citric acid worked much better than the vinegar or tartaric acids had. It made a skein that varied from deep red to burgundy color. The color stuck to the yarn extremely well.

orange-cochineal

Dyeing cotton cloth in cochineal treated with citric acid (orange) and ammonia (red to purple). Unfortunately, these colors were not colorfast. Upon rinsing, they changed back to neutral pink.

I then took the same cochineal bath (it was quite strong) and added ammonia to turn it from red to purple, again making a variegated skein. I divided the bath in two and had part of the skein simmer in the purple, part in a pot with more citric acid added back. I think I diluted it too much. Part of the skein between the two pots didn’t get much dye and remained a lavender color. The final skein varied nicely from lavender to burgundy to magenta to purple. The cotton swatch I tried was left in the citric acid side (which was now orange) over a weekend and it looked nicely orange when I took it out, but the differences in color washed out when I rinsed them – the pH neutralized. I need to figure out a way to set the color in cotton, maybe by not rinsing it before placing it in a drier. The wool yarn retained the varied colors nicely upon rinsing and washing in the laundry.

dyed-skeins-2

Skeins of dyed yarn before untangling. Some skeins were dyed a solid color, others were variegated.

Then I tried the tricky one – indigo. I had purchased the sodium hydrosulfite, used to reduce the blue indigo to the leuco state where it dissolves and penetrates the cloth. I followed the suggested steps from my research, but ran out of time to finish the process as a fire system sprinkler pipe burst outside the school and we had to evacuate while the fire department came to fix it. I turned off the hot plate quickly and grabbed my stuff, because it was the end of the day before Winter Break. I didn’t want to wait for the all clear, so I just went home. It took me a few days to get back to school, what with preparing for Christmas and shopping, cleaning, and cooking sugar cookies with my sons, etc. The yarn and cotton had been soaking for days. By the time I rinsed everything out, the cloth and yarn were a deep blue. I think I used to much indigo powder – this stuff is strong. The cloth washed out to a light blue and after washing the yarn, it faded as well but had a nice variegated color scheme.

After Winter Break and during the start of my second semester STEAM class, we tried out one more skein dyed with walnut shells and marigold flowers. I had some marigold blossoms I picked off my flower patch right after the first deep freeze in December and had dried them out. It died the wool a golden yellow, but I tried variegating the skein using walnut shells and hulls, but the brown color washed out to an ugly tan in both the cotton and the wool yarn. A student brought in black walnuts, but the result was the same after several attempts. I tried concentrated madder dye on part of the skein, but it didn’t work well, either. I think the marigold prevents other dyes from overdyeing. Perhaps other mordants would work for the walnut. It never got as dark as I expected. So the marigold skein is my least favorite – kind of a dirty yellow. More experimentation is needed here.

failed-experiment

Experimenting with marigold dye (middle), madder root (right), and walnut shells (left). If the colors had remained this intense, it would have been OK. But the walnut shell and madder rinsed out and were much lighter upon washing.

I met Katie Wirthin, an education specialist from the Natural History Museum of Utah, when I was presenting my STEAM session at the NSTA STEM Forum in Denver last summer, and she asked if I was interested in teaching a workshop at the museum this year. We had communicated back and forth all fall, and once I finally had my Teachers for Global Classrooms online class done (more on this in a later series of posts), I was able to teach a workshop at NHMU. The week I was scheduled to teach it to about 23 teachers, they had a power outage and had to postpone the class for a week. The next week only eight people came, but it turned out well. Katie had gotten all the materials and as usual I tried to do too much in the two hours. We did marbled paper, iron gall ink (except I forgot to bring the tea bags – they were able to scrounge some green tea in their cafeteria which actually worked far better than the regular brown tea – you could really see the black pigment form). The final activity was dyeing cloth – we used terry cloth swatches, and it worked well but we ran out of time. She still has much of the supplies left, as it was designed for more people. We will probably run the workshop again on a Saturday for three hours.

dyeing-with-sandalwod

A student dyeing a swatch with sandalwood dye using a tin (II) chloride mordant. Notice the dark orange color.

Now that I have six skeins of yarn dyed, my wife has untangled it all and rolled it into balls so she can crochet a sweater from it. I’m not sure if I want the marigold color or not, but experimentation is part of this process. It might be an epically ugly sweater, but I don’t care. I will wear it proudly.

spinach-dye

Some green dye extracted from spinach leaves.

My STEAM students are beginning the lab again, and one student is using sandalwood for the first time. She used tin (II) chloride as a mordant, and the color turned a deep orangish brown, so as soon as I get more skeins of merino wool yarn, I will dye one with sandalwood. Another one is using spinach leaves for a green dye, and we’ll see how that goes. We need to order elderberry plants or leaves for another green color (it might take a while to grow the trees), and logwood for purple to black. There is still so much to experiment on before I post the final recipes. We still have to figure out how to improve the walnut shell dye. But we’ve learned a great deal so far, and I’ll report on my second semester class in a few weeks as we continue to experiment. This is what inquiry is all about.

yarn-balls-2

The skeins untangled and rolled into balls for crochet. My wife will make me a sweater from these. The cotton swatches will be turned into a patchwork quilt of our school logo.

dyed-skeins-of-yarn

Skeins of dyed merino wool yarn. Clockwise from top left: Cochineal treated with citric acid (red), rabbitbrush (yellow), indigo (blue), cochineal treated with ammonia (purples), and madder root (orange).

Read Full Post »

final-flowers-2

Glass flowers made by AAI students at Holdman Studios.

During the 2016 fall semester at American Academy of Innovation, I started out in a bare science classroom without any lab stations or sinks. This was a challenge, but also an opportunity as I got the chance to design my own lab. Once I had finished the design and the architects rendered their version of it and the bids came back, it was late October. By the time the cabinet makers were ready to install, it was the week before Thanksgiving. I moved everything into the center of the room and covered it all with a large green tarp for the duration of the construction. I moved my classes into the school library for three weeks.

final-flowers-3

Glass flowers made by students at AAI. Mine is the red one with blue edges at the bottom right.

Since my STEAM it Up class couldn’t build sculptures or do tie dyed shirts or other such projects in the library, we took the three weeks to learn video filming techniques. I also set up a tour of a local glass studio. We researched the processes of glass blowing and the students wrote up a basic script and filmed the narration.

gathering-glass-from-crucible

First step: Gathering molten glass onto the puntil rod from the crucible.

Now I have done this before, as reported previously. I took a group of students from Mountainland Applied Technology College to Holdman Studios in 2009 to document the processes of glass blowing and stained glass artistry. The blown glass video was edited into a short description of the process which can be found here on YouTube (https://youtu.be/0TyDqZCGkpI ) and on my video page in this blog.

shaping-the-gather

Step 2: The molten glass is shaped on a metal shelf next to the crucible.

This time I wanted to get additional footage and give my new students a fun experience, so I set up a class for them to learn how to make glass flowers. These are simpler because they only involve stretching the glass, not blowing, so each student who wanted to pay the fee could make their own.

cullet-for-first-gather

Step 3: The glass is rolled in colored cullet or frit to produce the interior stem color.

We traveled down to Thanksgiving Point to Holdman Studios on November 30, 2016. We signed up and chose our colors. I set up some video cameras to record the process and explanation. A puntil rod is used and not a blowpipe since no blowing is needed.

Here are the steps for making a glass flower: A pre-heated puntil rod is used to gather the molten glass from the crucible, where it is shaped into a cone on a metal shelf.

rolling-first-gather-brielle

Step 4: The first gather is balanced by rolling it at the rolling station.

Colored cullet or frit is added to the molten glass by rolling it through the frit on the marver table. The rod is rolled to get the glass to the desired balance. A second layer of glass is gathered at the crucible and a second color added at the marver table. The first color will be the interior or stem of the flower, the second will be the outside edge or petals of the flower.

second-gather-cullet

Step 5: A second layer of molten glass is added and shaped, then rolled in a second color of cullet to create the flower petal color.

The student at the rolling station then uses forceps to pull out the molten glass into a flower shape. If the student is too cautious or takes too long (like me) the glass may cool too much to be pulled and must be reheated in the glory hole.

flattening-the-glass-me

Step 6: A flat paddle is used to flatten the molten glass agains the puntil rod, to allow for a hollow stem in the flower. I am wearing gloves and a fireproof sleeve to prevent my arm from getting burned. The glass is very hot.

pulling-out-flower-drew

Step 7: The student begins to pull out flower petals from the molten glass.

Once the flower shape is done, the flower is pulled out along the axis of the puntil rod to form a stem, which is either kept straight or twisted up depending on what the student wants. The glass is scored and knocked off the puntil, then fire polished with a blowtorch and placed in an annealing oven for 24 hours to gradually cool down.

pulling-flower-3-sterling

Step 8: Working quickly around the flower, the student continues to pull out the glass to make the flower larger. It feels like pulling taffy.

Six students and two adults, including myself, made flowers. They turned out very well. I had to return two days later to pick them up, and the colors were amazing as seen in these photos. Mine is the flower with a red stem with blue petals, which I gave to my wife as a Christmas present. The process was tricky but fun. I had to wear gloves and a fireproof sleeve to prevent my arm hairs from singing. The glass felt like pulling taffy. I highly recommend that you try this out if you get a chance.

glory-hole

Step 9: If the glass begins to cool (as mine did because I took too much time to pull it), the piece must be re-heated in the glory hole.

We got some good photos and video, even though lighting conditions in the studio are challenging (there is a strong backlight). Audio is also a problem as the glory hole and fans are noisy. But I can hear the explanations well enough to at least transcribe the footage, and record new narration over the top when I finally edit all of this together into a longer video.

pulling-out-stem

Step 10: Once the flower shape is done, the flower is pulled away from the puntil along its axis to create a stem for the flower. The first color of cullet becomes the stem color.

If you want to schedule your own lessons to learn to make glass flowers or even blow your own Christmas ornaments, here is the link to the Holdman Studios page:

https://www.holdmanstudios.com/hotshop-classes/

spinning-the-stem-noah

Step 11: If the student desires, the puntil rod can be rolled to twist up the stem.

fire-polish-me

Step 12: The glass is scored with forceps, knocked off the puntil rod, then placed on fireproof cloth and fire polished with a blowtorch, as I am doing here. The flower is then placed in the annealing oven (at left) to slowly cool down over 24 hours.

students-with-flowers

Some of the students at American Academy of Innovation who made glass flowers at Holdman Studios.

glass-display

Displays of glass at Holdman Studios. In addition to classes for making glass flowers, the staff also holds classes for traditional glass blowing including making Christmas ornaments.

Read Full Post »

junk-hat

A hat created by Justin, one of my STEAM it Up students. It is made of upcycled and repurposed materials.

At the beginning of the school year in my STEAM it Up class I had the students vote on which of many possible projects they wanted to work on. The one unit they all agreed on was to make a series of sculptures or cosplay items out of repurposed, upcycled junk. I’ve been collecting materials for years, ever since I created my first “junk” sculpture at the age of 18. I’ve taught this unit three times before in Intersession classes and afterschool clubs when I was at Walden School of Liberal Arts. The results were mixed – the high school students did fairly well, but not so much the middle school students. It seems at that age students are much better at tearing things apart than at systematically planning how to put them back together.

junk-cat

Small junk sculpture of a cat, made by Emily.

My main reason for teaching the class was to actually use up the junk I’ve been collecting and clean out my workshop. Yet it seems I wind up with more stuff before than after – maybe because of the aforementioned “tearing apart” proclivity of middle school students; what was nicely compacted as old VCRs and DVD players is now a series of scattered pieces.

bracelet-and-diagram

A bracelet and a diagram, created for my STEAM it Up class.

So I was a bit reluctant to do this again and bring in boxes of materials that inevitably make a terrible mess in my classroom. But I also knew it could be fun and educational if done right, so I took the chance. I structured this differently than before: each student would need to produce three items. The first would be a small sculpture as a beginning exercise, something that can be easily held in one hand. The second would be a cosplay item or some type of costume piece or wearable sculpture or prop. The third would be a group project where all eight students would plan out a large-scale sculpture together. The second and third projects needed to be sketched out and planned in advance.

little-man

A little man, made from old keys and other recycled objects. Glued together with hot glue and E-6000 adhesive.

They came up with a variety of interesting sculptures for their first and second projects, as seen here. I am also including some of their sketches, although in too many cases they drew the sketches after they made the sculptures. Some of the sculptures involved LED lights, which took some planning and thinking through. The point is to teach them some engineering and materials science skills, and engineers plan everything out in advance. Some students resist this, as they see these sculptures as art forms, not engineering designs, and pre-planning seems to them to impede the creative process. Of course, without planning and thinking through how to attach the disparate materials together, their sculptures tend to fall apart. Glue alone can’t hold a load-bearing member like a leg or arm.

small-soldier

A tiny soldier, made by Noah for my STEAM it Up class.

Which is why we are doing a group project. We decided to build a futuristic Mars colony city (to go with our school’s overall Mars Exploration project – more on this coming in my other blog at http://spacedoutclassroom.com).

space-ship

A space ship sculpture, made from recycled motherboards and other electronic junk.

Two years ago, we had someone contribute a lot of materials to Walden School that were from a doctor’s office or scientist’s lab. I still have no clue what most of the stuff was even for – some of it is probably valuable as antiques. One item was a still for making distilled water, but bought in the early 1970s because of its horrible avocado green color scheme. I managed to get a chemistry professor at Brigham Young University to take it off my hands. But the rest of the stuff was of little use. One item was a plastic autoclave, with multiple levels for sterilizing surgical equipment. There were also glass containers for storing or cleaning microscope slides (I think – based on similar plastic items I’ve seen in the Flinn Scientific catalog).

flying-saucer

A flying saucer that lights up, made by Sam for my STEAM it Up class.

The autoclave looks like a domed city, something out of Isaac Asimov’s Caves of Steel series of books about the android R. Daneel Olivaw and Detective Elijah Bailey. We were looking at the autoclave and other materials and “noodling around,” which is an important scientific and engineering creative process: putting things together that don’t normally go together and seeing what would look good and work toward a harmonious whole. We came up with the glass containers as pillars for the autoclave layers. One of the students suggested offsetting the layers. I sketched these ideas out on my whiteboard, and we worked through how to attach everything together using metal piping from old 1980s brass and glass furniture with bolts and L-brackets, and wire to tie the pillars together to make the whole thing structurally sound.

bracelet-with-led

A steampunk bracelet with LED light, made by Sam.

Teams of students took different layers. The bottom layer (Level 1) will be the industrial and manufacturing center, so one team is making industrial-style equipment and buildings that look like factories and power plants. One team is doing Level 2, which is the main residential sector. One team is doing Level 3, which is the administrative, shopping, hospital, and school level. They built a school from an old calculator and wanted the holes to become solar panels. I remembered having a folder with a shiny metallic-blue cover, so we cannibalized it to become the solar cells. Level 4 is the park, university, and upper class residential sector, and the dome will have spaceports, defense, and communications centers. Already the pieces are shaping up. This is exactly the engineering and materials science I had hoped for when we started this unit.

magic-wand

Magic wand, made by Sarah for my STEAM it Up class.

We are now beginning the construction of the main city levels, but Winter Break has halted the process. It will be our last project for the STEAM it Up class. It will sit upon two wooden plaques, again donated from the doctor’s office, and we’ll create smaller domes for hydroponics and farms, with small Mars rovers (already made by one student who is great at miniaturized sculptures).

stamp-and-ring

Small sculptures created by my STEAM it Up students: a stamp and a ring.

We’ll make Mars landscaping from paper maché and HO scale model train decorations. I also hope to put wires up through the support shafts and add LED lights to the city. The final city will be quite heavy and hard to move around, so it will stay in my classroom and make a great decoration for my newly completed lab. We’re photographing the construction process, I’ll interview the students, and we’ll add all of this to our ongoing Mars project documentary video. I’ll write another blog post in January when we can show the finished sculpture. I would also like to create a virtual 3D model of the finished city so we can animate and label the parts.

mars-colony-sketch

First drawing of our Mars colony, using parts from an autoclave as the levels of our city and glass microscope slide cleaners as pillars.

We still need to pick a name for it. Looking up names for Mars in various cultures, and adding translations for the word “city,” I come up with some possibilities: Aresdelphia, Al-Qahira Madina, Harmakhis Delphi, Hradelphia or Hrad K’aghak’, Huo Hsing Shr, Ma’adim Delphi, Kaseishi, Mangalakha, Martedelphia or Marte Cuidad, Mawrth Dinas, Nirgal Alu, Shalbatana Alu, Simudelphia, Labouville, and Tiuburg. We’ll have to vote on it.

mars-colony-first-attempt

Even without glue or bolts, the layers stack up fairly well in this first attempt to build the Mars colony city. We decided to use two of the boards instead of one so we could add more landscaping and farming domes using HO-scale model railroad decor.

Read Full Post »

rabbitbrush-with-mountain

Rabbitbrush blossoming in October in the southwest corner of Salt Lake Valley, Utah.

In my STEAM it Up class at American Academy of Innovation, my students have conducted an inquiry lab that combines chemistry and technology with history and an ancient art form: dyeing cloth. I reported on a similar lab two years ago, but we have taken it much further and created an investigation that would work well for all chemistry classes without requiring too much equipment or expense. This activity fits in well with the NGSS dimension of science and engineering practices, as it allows students to identify variables, create experimental procedures, collect data, and report results in a fun and engaging way that incorporates art and the history of chemistry. Since dyestuffs are found around the world, there is also a global education component.

collecting-rabbitbrush

My STEAM it Up students collecting rabbitbrush blossoms near American Academy of Innovation (the bright orange building in the background).

We live in Utah, and there are a number of dyestuffs available that were used by Native Americans. Some materials, such as cochineal, were imported and traded for from as far away as modern day Mexico. Others are native to Utah, such as rubber rabbitbrush or Ericameria nauseosa. Our new school was built in a grassland area in the west side of Salt Lake Valley that was formerly used by Kennicott Copper Corporation (now Rio Tinto) as a mine and waste dump. After millions of dollars in cleanups, the site is now the new planned community of Daybreak, and our school is on the west edge near the South Jordan Trax Station. Since it is a former prairie, rabbitbrush grows around us in the empty lots right next to our school.

cutting-rabbitbrush-blossoms

Preparing rabbitbrush blossoms for dyeing.

I had read that marigold blossoms make a good dyestuff, so on the day of our first attempt, I snipped half the blossoms off my marigold flowerbed (which grew up from last year’s seeds). My students and I took a mini field trip about 50 yards from the school where rabbitbrush was growing. It was the end of September and the brush was just beginning to bloom with bright yellow flowers in clusters. We collected several buckets. The species name of nauseosa is well earned, as the smell is a bit nauseating (some students are more sensitive to it and can get itchy eyes, so be careful of this). We also had walnut shells, cochineal, and the marigold blossoms as our dyestuffs.

rabbitbrush-blossoms

Rabbitbrush blossoms ready for boiling in the dye bath.

Students teams of two each decided on a variable to test, such as the type and concentration of dyestuff; the type and concentration of mordant (a mordant is a metal salt such as sodium carbonate [washing soda] or alum powder [hydrated potassium aluminum sulfate]) that helps the dye bind with the fabric threads); the temperature and duration of the dye bath; and colorfastness (if the dye holds its color upon washing). They determined a procedure for testing their one variable while holding the rest constant. We then dyed small swatches of white terrycloth washcloths. A further variable could be the type of fabric used, but I only had the terrycloth for now. I hope to order some untreated cotton and wool yarn and dye them as well.

rabbitbrush-and-marigolds

Rabbitbrush and marigold blossoms ready for dyeing.

Our basic procedure was to boil two Pyrex dishes half full with water. To one the mordant was added, to the other the dyestuff. The cloth swatches were first boiled for 10 minutes or so (depending on the group’s procedure) in the mordant, then the swatch was added to the dye bath.

cooking-rabbitbrush

We soaked white terricloth pieces in a boiling alum solution (the mordant), then boiled them in the rabbitbrush dyebath.

The results were excellent, and we were careful to label all the swatches with Sharpie permanent markers so that we could make comparisons after. We cut the dyed swatches in half and I washed one half at home in my washing machine. Each swatch was scanned into my computer and the eyedropper tool in Adobe Photoshop (you could use the Gimp as well) was used to sample three places on each swatch and record the RGB values. We averaged the values, and compared them to see which combinations of variables gave the best results.

dyeing-with-cochineal

We also dyed terricloth swatches with cochineal and an alum mordant.

We also tried adding more than one dyestuff to the same bath (doesn’t work well) and overdyeing, that is, dye a swatch with one color, then put it in a different color. We also tried an ornamental plant that was growing around our school, which I call firebrush; it has green to pink-red leaves (older interior leaves are more green). The firebrush provided great pigment upon boiling, and turned the cloth a nice pink color, but when rinsed out, the color gradually changed to a medium green. I suspected it might be a pH indicator, so I dipped part of one green swatch in vinegar and found it turned bright pink again. Only those two colors – green when neutral, pink in an acid. But it is apparently a good indicator and a fairly colorfast dye.

first-swatches-2016

Our first dyed swatches, labeled with permanent marker. The left swatch is rabbitbrush, the second is marigolds, the third is cochineal without any pH modification, the fourth from left is cochineal with Cream of Tartar added, the last (right) swatch is cochineal with vinegar added.

As a further experiment, we tried adding Cream of Tartar or vinegar to the cochineal to see if we could turn it from magenta-burgundy to more of a bright red color or even orange, with mixed success. We got a bit more reddish color with Cream of Tartar, but never got to orange. Reading websites and other sources, I found that we need a stronger organic acid that wouldn’t dilute the dyebath, such as citric acid. To turn the cochineal more purplish, ammonia can be used. We also tried cochineal with rabbitbrush but still did not get an acceptable orange – just a salmon pinkish color. We need orange because our school colors are Innovation Orange (you can see our building from miles away, as the photos show) and Titanium (we are the Titans). We could also some other dyestuff, such as madder root, sandalwood, or safflower.

swatches-2016

Swatches from our dye experiments. The ones on the bottom are pieces that have been washed to test colorfastness. The brown swatches are from walnut shells and hulls soaked in water over several days. Other swatches test different types of mordants (alum versus soda ash versus Cream of Tartar) or different concentrations of dye.

We experimented for several weeks with different combinations and the students wrote up their final conclusions. Here is what we learned: The best mordant for rabbitbrush, marigolds, and cochineal is alum powder. Cream of Tartar tends to gladden (or lighten) the colors, whereas soda ash (sodium carbonate) tends to darken or sadden the colors. Cochineal was less colorfast than we expected based on previous experiments, and tended to bleed all over the other colors when washed. Walnut shells seemed to do best with soda ash as a mordant. Overdyeing was only partially successful; we were trying to get a good orange and never did. The marigolds didn’t make a good orange either – but did do a nice golden brown color. Walnut shells with rabbitbrush made a nice golden tan, but cochineal with rabbitbrush depended greatly on which was dyed first; the overdye tended to eliminate most of the first dye.

fireweed-results

The results of our experiment with firebrush, an ornamental shrub with green inner leaves and scarlet outer leaves and wicked thorns. The dyebath was bright pink, as in the swatch second to left, but when rinsed out it turned green as in the swatch second from right. I took a rinsed green swatch and dipped it in vinegar and the bottom turned pink again. Firebrush is apparently a pH indicator.

A final variable is to test different fabrics. I ordered more dyes, including madder and indigo, from Dharma Trading Company in November as well as untreated merino wool yarn and cotton cloth, with more alum powder and citric acid. Adding the citric acid to the cochineal did indeed turn it red (and eventually orange). Adding ammonia turned it purple. It worked wonderfully on the untreated wool yarn; I dipped one end in the regular cochineal and the other end in the cochineal with citric acid and got a beautiful variegated red to burgundy-crimson skein that held its color well upon rinsing and washing. The cotton cloth didn’t hold as well; I make the cloth purple to orange and even let it set overnight in the dyebath, but upon rinsing all the cloth turned back to a light magenta. The rabbitbrush made a nice soft yellow for the merino wool yarn.

cochineal-dyed-yarn

Merino wool yarn dyed with cochineal. I varied the pH by adding citric acid to get the brighter red colors, and dyed one end of the skein with regular cochineal and the other end with citric acid treated cochineal to produce variegated yarn. Now to crochet it into a sweater . . .

My wife is amazing at crocheting, and my ultimate STEAM art product will be for her to use our naturally dyed merino yarn to create a sweater and a beanie. I also want use the dyed pieces of cotton to make a quilt in the shape of our school logo. I know several professional quilters who can do this for us. If the cotton isn’t accepting the dyes, then I must experiment further. Perhaps I didn’t soak the cloth in the mordant bath long enough. I am still experimenting with getting blue colors from woad and indigo, but more on this in a later post.

Read Full Post »

 

Yours Truly in 3D

Yours truly in glorious 3D plastic. I modeled my head using Sculptris by Pixologic, then added the base in Daz3D Carrara. I had the printer set on the fastest speed and one shell, so the top of the base did not get covered very well.

3D printers have become all the rage in STEM classrooms. I’ve been salivating over them since they first became affordable for schools. We purchased one at Walden School just before Thanksgiving and I’ve kept it busy ever since. However, like any new technology, if I didn’t have a long-term plan for how to use it or a clear purpose in mind, it will be a new toy for a month or so and then sit idly in a corner gathering dust. They are great for someone who is willing to experiment to get print jobs to work consistently. I had quite a few failures at first, and still have them occasionally. The printers aren’t cheap and neither is the plastic. But with these caveats in mind, they can be truly useful additions to your STEM classes.

Lea - Camille with studs

Two of my MYP Design students printing out plastic snaps they designed.

I’ve taught 3D modeling classes for many years, and have incorporated 3D technologies into many of my science projects. I’ve written about several ways of doing this in previous blog posts, including the last post on modeling Greek philosophers in 3D. My students have become proficient at modeling any kind of object they need, so a 3D printer was the next logical step. Since I am teaching mostly engineering, computer science, and design classes this fall, we have need of a way for students to manufacture prototypes of their designs. For these reasons I convinced the powers that be to purchase a 3D printer.

All 3D prints

Some of the successful print jobs we’ve done so far. Most of the objects have been done as experiments to learn and test the workflow from 3D model to print.

After a lot of research, I decided to buy a Monoprice dual extruding printer – available for about $700. It came within three days of placing the order (woo-hoo!) and my IB Design Technology students had it assembled in about two minutes. Then came the process of learning how to use it to get consistently successful prints.

This isn’t as easy a process as some may think – if you have the notion that it’s like plugging in an ink jet printer and sending a print job from any software (in other words, plug and play) then you haven’t studied up enough on how these printers work.

Heraclitus failed

What happens when the model detaches from the print platform. It slid aside but continued to print, leaving the “spaghetti brains” hanging under the top of his head. The grid on the bottom is the raft. It also created scaffolding under the beard, which has been removed.

The process is called additive manufacturing and involves creating an object by extruding a thin plastic filament onto a flat print platform. The platform moves slowly downward (z-axis) as the extruder moves sideways and in and out (x and y-axes) to build one layer at a time. Think of using a hot glue gun to build up a contour map of a landform. For this all to happen, the 3D object must be split into layers by the printer’s software and a pathway generated for the extruding nozzle so that it lays down the filament without it getting tangled or dripping. This pathway/layer split is referred to as g-code.

Tyrian Purple 2

A model of a molecule of Tyrian Purple dye. This dye was extracted in the Phoenician city of Tyre on the coast of Palestine by crushing the shells of murex sea snails. One snail would produce only a drop of the dye. It was so expensive only the Roman nobility could afford to wear clothing dyed with this color, hence the phrase “born to the purple.” It is my favorite molecule. The large atoms on each end are bromine, which provides the burgundy/purple color.

 

To get the 3D model into a form that can be split into g-code, it must be saved or converted into an STL format. There are online converters for doing this. Of course, even before that, you have to know how to make the 3D objects in the first place unless you are content to simply print out someone else’s models, such as those found on Thingiverse or at the NASA 3D website. In that case, you aren’t realizing the potential of this device for modeling, engineering, and prototyping of student-created projects.

Sarah portrait

Student self-portrait. The head and hair were done in Sculptris, the base and text in Carrara. It then was exported as a 3DS file and converted to STL, then loaded in ReplicatorG to generate the g-code layers.

If this process sounds complicated, it is. But that’s not the half of it. If your models have overhanging parts, the printer will just create a lot of plastic “boogers” (see the failed print of Heraclitus and the “brains” hanging out of his disconnected skull to see what I mean). So the software creates supports or scaffolds to hold up the overhangs, which must then be removed and sanded down. The software also creates a raft or grid of plastic underneath the model to help it stick to the print plate. That is the grid you see under the failed Heraclitus.

Black plastic objects

Our printer allows objects to be printed with two colors at once. I haven’t attempted that yet, but here are some objects with black plastic. The D is part of my family’s cattle brand, the Lazy Bar D ranch.

There are many problems that can occur. If you print large, flat objects with square corners, then the plastic can cool too quickly with both sides exposed and the corners can peel up and curl. Although the print platforms are usually covered with a tacky tape such as Kaptan, you can still have print jobs come loose and start sliding around as the extruder nozzle moves. This is what happened with the failed Heraclitus – it did well up to his eyebrows, but the continued wiggling of the nozzle head caused the raft to break loose, so the printer continued the job off to the side as the model slid away in stages. Kind of cool looking, but the print wasted eight hours and some plastic. Now I have to start it over again and tape it down better.

Democritus and Aristotle prints

Printouts of Democritus and Aristotle. To provide better quality for the print, I created a sloped base with rounded edges to prevent curling. Both models were created using Make Human for the heads, then imported into Sculptris to add the hair, beards, and eyebrows. Finally, the models were brought into Carrara to add the bases and text before exporting as a 3DS file.

I have also had an issue with the workflow itself. To make Heraclitus (and Democritus and Aristotle) I started with a free program called Make Human, which allows one to set morph targets on a generic human figure to make the features look a particular way. I loaded in photos of the philosophers to use as referents. Then I exported the model as an OBJ and imported it into Sculptris, another free program done by Pixologic, the same company that does the leading character modeler Z-Brush. It works like a ball of clay that you push and pull into shape. I used it to add the hair, beards, and eyebrows. Then I exported it again as an OBJ and imported it into my full 3D modeler, called Carrara by Daz3D (but you could use Maya or Blender, etc.). In Carrara, I decapitated the head from the body using a Boolean command, then added the base and letters. I finally exported it as a 3DS model, converted it to STL using Online 3D Converter, then loaded it into the ReplicatorG software for generating the g-code. By the time I was done, this model had been through five different software packages.

Cow parts and snaps

Some student design projects printed out. The cow parts (head, legs, and tail) on the right are for a toy cow. The body of the cow had some issues printing, and the C-joints on the legs didn’t quite fit. The snaps on the left worked with the smallest positive size and the split hole configuration. The MYP Design students planned, created, modeled, and tested these prints. Now they need to make revisions. This is the engineering process.

This is a complicated process, and the model can fail anywhere along the way. I’ve had some trouble getting Carrara to export the models correctly – it says they are there, but have no data in them. I think these are models that have too many polygons, such as those where the entire head and hair are done from Sculptris. Using Make Human keeps the head model’s polygon count reasonable.

Mare Fecund printouts

Two printouts of Mare Fecunditatis on the Moon. I started with LOLA data from the Lunar Recon Orbiter mission, loaded it into Adobe Photoshop in Raw format, selected the section I wanted and loaded it into Daz3D Bryce as a grayscale height map, which turned it into a terrain object. I exported it as a 3DS file, added the base and letters in Carrara, and so on. The print on left was done at fastest print speed and didn’t fill in well. The one on right has two shells and reduced print speed, but still lacks detail. My next attempt will be at a 45° angle with supports underneath to gain the better resolution of the x and y-axes.

I’ve tried making 3D terrains of Mars and the Moon based on Mars Global Surveyor MOLA and Lunar Reconnaissance Orbiter LOLA data. I load the grayscale heightmaps into Bryce (another Daz3D program), then export a 3DS file into Carrara to build a base and text. The final results have had issues with holes in the bottoms of craters, text that doesn’t show up well, and insufficient vertical exaggeration to see any details. I also had trouble with the first attempt to print this terrain (of Mare Fecunditatis on the Moon) because I only had one shell and had the printer on fastest nozzle extrusion speed and travel rate, so the top was not solid enough.

 

But . . . with all these problems, I am succeeding now more often than failing. That is what engineering is all about, after all – you have to learn how to fail until you succeed. I’ve tried a variety of different print jobs, found out the trouble spots and (mostly) how to correct for them, and I am ready to start printing out student projects now that we are approaching the end of the semester.

Hackathon 3D 4

Students learning 3D modeling using Sculptris at the Utah County Hackathon on Dec. 12, 2015, sponsored by 4-H.

 

 

On Saturday, Dec. 12, 2015, I presented a session at the Utah County Hackathon sponsored by the local 4-H Club. I took the 3D printer along as well as some laptop computers from my school and taught about 24 kids how to use Sculptris and how to do 3D printing. The session was a great success. There was a man named Colby there who had quite a bit of experience with 3D printing. He gave some advice that I will try out soon: First, I can get better resolution by standing my terrain models on their side. These printers have better resolution in x and y-axes than in the vertical z-axis. I just need to build some buttress supports to hold it up that can be removed later. He suggested using PEI (polyetherimide) tape, which becomes tacky when heated on the print platform, then less sticky when cool, so jobs won’t slip while printing but still come off cleanly when cooled down. He gave me some ideas for better temperature settings – I might have my platform temperature too high. There are still many experiments to try.

Hackathon studs and printer

3D printer and students learning Sculptris at the Utah County Hackathon, Dec. 12, 2015.

So, to summarize the lessons learned:
1.) Don’t expect a 3D printer to work perfectly right out of the box. There are a lot of tweaks to do, including calibration, print platform leveling, temperature adjustment, feedrate adjustment, etc, etc. to do before you will be consistently successful. Read up on the forums and ask lots of questions before deciding which printer to buy, and be prepared to experiment.
2.) Unless you are content with printing pre-created models, you should be ready to teach (or facilitate) your students learning how to do 3D modeling in the first place, and how to convert their models into the STL format needed for 3D printing. There are many fairly easy to learn 3D programs out there, including Sculptris, Sketch-Up, Tinkercad, and Make Human. Maya is also free for students and teachers, but the learning curve is steep. Blender is open source and free, but the interface is hard to learn even for experienced modelers.

Hackathon 3D 2

Students learning Sculptris at the Utah County Hackathon on Dec. 12, 2015. They are building alien heads. They enjoyed learning the program and seeing how to do 3D printing.

3.) Try to get a printer with a heated print platform and variable temperatures and extrusion rates. One size does not fit all jobs here, especially if you want to print with more than one type of plastic. ABS expands more when heated than PLA plastic, so it tends to curl more as it cools down. It also requires a higher nozzle temperature to melt it.

4.) Keep an eye on print jobs. My failed Heraclitus started out well, so I taped the edges and left it overnight to print. Somewhere around six hours into the job, it detached from the print plate and caused the fatal print defects shown. Print jobs also sometimes stop for no reason. You won’t be able to start them up from where they left off. It will just be wasted plastic. You must keep trying, and be patient.

Electroneg and Tyrian purple

Final printout of the Tyrian purple molecule. The black model is of the periodic table of elements, showing the property of electronegativity for each element. This was done by typing the values into a TXT file, then importing it into ImageJ software using Import-Text Image, then converting the grayscale image into a height map for Daz3D Bryce. From there, we used the same process as the 3D Moon models.

5.) Have a plan and a purpose for why you need a 3D printer. Otherwise they can be frustrating and ultimately unsatisfactory for you. If you haven’t integrated 3D data analysis or modeling into your classes already then a 3D printer will be useless for you. If you want some ideas how to do this, look at some of my other posts, such as this one on creating 3D models of periodic properties of the elements: https://elementsunearthed.com/2014/05/10/visualizing-periodic-properties-of-the-elements/ . Here is a photo of a 3D print job done from one such model, showing electronegativity, as well as a model of the molecule for Tyrian Purple dye.

6.) Some supplemental materials will help. Buy some Aqua Net Super Hold odorless hair spray (purple can) and spray it onto a paper towel, then rub it onto the tape on the print platform to improve the stickiness. Even with that, the jobs might still work loose. Some people use glue sticks or a gel adhesive. You will need a roll of Kaptan or PEI or blue painters tape to put on the platform if the tape starts to peel up.

Indi portrait

Student self-portrait using Sculptris and Carrara.

7.) Avoid large flat objects with sharp corners. They tend to curl up when cooling. If you build in supports, you can print up to a 45° angle without scaffolding, and therefore take advantage of the better resolution of the x and y-axes.

Good luck. Let me know what types of projects you attempt, and we can swap ideas. As you can see from the photos here, there are many possibilities for chemistry classes alone.

Hackathon 3D 1

Students working with modeling clay to learn the concept of 3D modeling. This is at the Utah County Hackathon on Dec. 12, 2015 at the Provo Library. The image on the screen is of the ReplicatorG software. It is printing my family’s cattle brand, the Lazy Bar D. Unfortunately, the bar wasn’t quite level with the bottom of the D in Carrara, so a raft wasn’t printed under it and it went at bit wobbly and timey-wimey.

Read Full Post »

Older Posts »