Feeds:
Posts
Comments

Posts Tagged ‘steam education’

dyed-yarn-balls

Dyed merino wool yarn using natural dyes. Top left: Rabbitbrush. Top right: Cochineal treated with ammonia. Bottom right: Indigo. Bottom center: Cochineal treated with citric acid. Bottom left: Madder root.

As a follow up to our inquiry lab to develop the best formulas for dyeing cloth with natural dyestuffs, I ordered some Kona 100% merino wool yarn and several yards of untreated cotton fabric from Dharma Trading Company along with indigo, cochineal, sandalwood, and madder root dye powders, and some mordants and other chemicals needed for these dyes.

As we finished up before Winter Break, I started testing these dyes and experimenting with variables to get an initial feel for how well the yarn and cotton work. My first test was rabbitbrush, as I had collected boxes of flowers before the color completely faded in October. I simmered a skein of yarn in aluminum sulfate (alum) powder as a mordant for an hour while boiling the rabbitbrush blossoms, then transferred the hot yarn into the dye bath. It accepted the color nicely.

Next came madder root. I used the same mordant bath and prepared a dye bath by soaking the madder root bits directly in hot water and letting it simmer while the yarn was in the mordant bath, then filtered the madder solution through a sieve before dyeing the yarn. The color did transfer, but was lighter than I had expected but a very nice light salmon orange. I used the same solution for about two feet of the cotton, but it turned out even lighter. Increasing the concentration of the dye bath didn’t seem to help.

cochineal-dyeing

Dyeing With Cochineal: The dye bath is bottom left. I crushed the cochineal shells in a mortar and pestle, then placed them in the sieve (top center) and boiled in the hot water. The yarn is simmered in the mordant (alum powder – to the right), then simmered in the dye bath, then rinsed out (in the sink in center).

With some confidence that the wool yarn was working well, I crushed some cochineal shells in a mortar and pestle and placed them in a sieve and the sieve into boiling water to make the dye bath. This was to prevent the shells from sticking to the yarn, which would have been hard to get off. I wanted to make a multi-colored skein, so I dyed part of the skein in plain cochineal, then added citric acid to the dye bath which made it turn bright red – the citric acid worked much better than the vinegar or tartaric acids had. It made a skein that varied from deep red to burgundy color. The color stuck to the yarn extremely well.

orange-cochineal

Dyeing cotton cloth in cochineal treated with citric acid (orange) and ammonia (red to purple). Unfortunately, these colors were not colorfast. Upon rinsing, they changed back to neutral pink.

I then took the same cochineal bath (it was quite strong) and added ammonia to turn it from red to purple, again making a variegated skein. I divided the bath in two and had part of the skein simmer in the purple, part in a pot with more citric acid added back. I think I diluted it too much. Part of the skein between the two pots didn’t get much dye and remained a lavender color. The final skein varied nicely from lavender to burgundy to magenta to purple. The cotton swatch I tried was left in the citric acid side (which was now orange) over a weekend and it looked nicely orange when I took it out, but the differences in color washed out when I rinsed them – the pH neutralized. I need to figure out a way to set the color in cotton, maybe by not rinsing it before placing it in a drier. The wool yarn retained the varied colors nicely upon rinsing and washing in the laundry.

dyed-skeins-2

Skeins of dyed yarn before untangling. Some skeins were dyed a solid color, others were variegated.

Then I tried the tricky one – indigo. I had purchased the sodium hydrosulfite, used to reduce the blue indigo to the leuco state where it dissolves and penetrates the cloth. I followed the suggested steps from my research, but ran out of time to finish the process as a fire system sprinkler pipe burst outside the school and we had to evacuate while the fire department came to fix it. I turned off the hot plate quickly and grabbed my stuff, because it was the end of the day before Winter Break. I didn’t want to wait for the all clear, so I just went home. It took me a few days to get back to school, what with preparing for Christmas and shopping, cleaning, and cooking sugar cookies with my sons, etc. The yarn and cotton had been soaking for days. By the time I rinsed everything out, the cloth and yarn were a deep blue. I think I used to much indigo powder – this stuff is strong. The cloth washed out to a light blue and after washing the yarn, it faded as well but had a nice variegated color scheme.

After Winter Break and during the start of my second semester STEAM class, we tried out one more skein dyed with walnut shells and marigold flowers. I had some marigold blossoms I picked off my flower patch right after the first deep freeze in December and had dried them out. It died the wool a golden yellow, but I tried variegating the skein using walnut shells and hulls, but the brown color washed out to an ugly tan in both the cotton and the wool yarn. A student brought in black walnuts, but the result was the same after several attempts. I tried concentrated madder dye on part of the skein, but it didn’t work well, either. I think the marigold prevents other dyes from overdyeing. Perhaps other mordants would work for the walnut. It never got as dark as I expected. So the marigold skein is my least favorite – kind of a dirty yellow. More experimentation is needed here.

failed-experiment

Experimenting with marigold dye (middle), madder root (right), and walnut shells (left). If the colors had remained this intense, it would have been OK. But the walnut shell and madder rinsed out and were much lighter upon washing.

I met Katie Wirthin, an education specialist from the Natural History Museum of Utah, when I was presenting my STEAM session at the NSTA STEM Forum in Denver last summer, and she asked if I was interested in teaching a workshop at the museum this year. We had communicated back and forth all fall, and once I finally had my Teachers for Global Classrooms online class done (more on this in a later series of posts), I was able to teach a workshop at NHMU. The week I was scheduled to teach it to about 23 teachers, they had a power outage and had to postpone the class for a week. The next week only eight people came, but it turned out well. Katie had gotten all the materials and as usual I tried to do too much in the two hours. We did marbled paper, iron gall ink (except I forgot to bring the tea bags – they were able to scrounge some green tea in their cafeteria which actually worked far better than the regular brown tea – you could really see the black pigment form). The final activity was dyeing cloth – we used terry cloth swatches, and it worked well but we ran out of time. She still has much of the supplies left, as it was designed for more people. We will probably run the workshop again on a Saturday for three hours.

dyeing-with-sandalwod

A student dyeing a swatch with sandalwood dye using a tin (II) chloride mordant. Notice the dark orange color.

Now that I have six skeins of yarn dyed, my wife has untangled it all and rolled it into balls so she can crochet a sweater from it. I’m not sure if I want the marigold color or not, but experimentation is part of this process. It might be an epically ugly sweater, but I don’t care. I will wear it proudly.

spinach-dye

Some green dye extracted from spinach leaves.

My STEAM students are beginning the lab again, and one student is using sandalwood for the first time. She used tin (II) chloride as a mordant, and the color turned a deep orangish brown, so as soon as I get more skeins of merino wool yarn, I will dye one with sandalwood. Another one is using spinach leaves for a green dye, and we’ll see how that goes. We need to order elderberry plants or leaves for another green color (it might take a while to grow the trees), and logwood for purple to black. There is still so much to experiment on before I post the final recipes. We still have to figure out how to improve the walnut shell dye. But we’ve learned a great deal so far, and I’ll report on my second semester class in a few weeks as we continue to experiment. This is what inquiry is all about.

yarn-balls-2

The skeins untangled and rolled into balls for crochet. My wife will make me a sweater from these. The cotton swatches will be turned into a patchwork quilt of our school logo.

dyed-skeins-of-yarn

Skeins of dyed merino wool yarn. Clockwise from top left: Cochineal treated with citric acid (red), rabbitbrush (yellow), indigo (blue), cochineal treated with ammonia (purples), and madder root (orange).

Read Full Post »

final-flowers-2

Glass flowers made by AAI students at Holdman Studios.

During the 2016 fall semester at American Academy of Innovation, I started out in a bare science classroom without any lab stations or sinks. This was a challenge, but also an opportunity as I got the chance to design my own lab. Once I had finished the design and the architects rendered their version of it and the bids came back, it was late October. By the time the cabinet makers were ready to install, it was the week before Thanksgiving. I moved everything into the center of the room and covered it all with a large green tarp for the duration of the construction. I moved my classes into the school library for three weeks.

final-flowers-3

Glass flowers made by students at AAI. Mine is the red one with blue edges at the bottom right.

Since my STEAM it Up class couldn’t build sculptures or do tie dyed shirts or other such projects in the library, we took the three weeks to learn video filming techniques. I also set up a tour of a local glass studio. We researched the processes of glass blowing and the students wrote up a basic script and filmed the narration.

gathering-glass-from-crucible

First step: Gathering molten glass onto the puntil rod from the crucible.

Now I have done this before, as reported previously. I took a group of students from Mountainland Applied Technology College to Holdman Studios in 2009 to document the processes of glass blowing and stained glass artistry. The blown glass video was edited into a short description of the process which can be found here on YouTube (https://youtu.be/0TyDqZCGkpI ) and on my video page in this blog.

shaping-the-gather

Step 2: The molten glass is shaped on a metal shelf next to the crucible.

This time I wanted to get additional footage and give my new students a fun experience, so I set up a class for them to learn how to make glass flowers. These are simpler because they only involve stretching the glass, not blowing, so each student who wanted to pay the fee could make their own.

cullet-for-first-gather

Step 3: The glass is rolled in colored cullet or frit to produce the interior stem color.

We traveled down to Thanksgiving Point to Holdman Studios on November 30, 2016. We signed up and chose our colors. I set up some video cameras to record the process and explanation. A puntil rod is used and not a blowpipe since no blowing is needed.

Here are the steps for making a glass flower: A pre-heated puntil rod is used to gather the molten glass from the crucible, where it is shaped into a cone on a metal shelf.

rolling-first-gather-brielle

Step 4: The first gather is balanced by rolling it at the rolling station.

Colored cullet or frit is added to the molten glass by rolling it through the frit on the marver table. The rod is rolled to get the glass to the desired balance. A second layer of glass is gathered at the crucible and a second color added at the marver table. The first color will be the interior or stem of the flower, the second will be the outside edge or petals of the flower.

second-gather-cullet

Step 5: A second layer of molten glass is added and shaped, then rolled in a second color of cullet to create the flower petal color.

The student at the rolling station then uses forceps to pull out the molten glass into a flower shape. If the student is too cautious or takes too long (like me) the glass may cool too much to be pulled and must be reheated in the glory hole.

flattening-the-glass-me

Step 6: A flat paddle is used to flatten the molten glass agains the puntil rod, to allow for a hollow stem in the flower. I am wearing gloves and a fireproof sleeve to prevent my arm from getting burned. The glass is very hot.

pulling-out-flower-drew

Step 7: The student begins to pull out flower petals from the molten glass.

Once the flower shape is done, the flower is pulled out along the axis of the puntil rod to form a stem, which is either kept straight or twisted up depending on what the student wants. The glass is scored and knocked off the puntil, then fire polished with a blowtorch and placed in an annealing oven for 24 hours to gradually cool down.

pulling-flower-3-sterling

Step 8: Working quickly around the flower, the student continues to pull out the glass to make the flower larger. It feels like pulling taffy.

Six students and two adults, including myself, made flowers. They turned out very well. I had to return two days later to pick them up, and the colors were amazing as seen in these photos. Mine is the flower with a red stem with blue petals, which I gave to my wife as a Christmas present. The process was tricky but fun. I had to wear gloves and a fireproof sleeve to prevent my arm hairs from singing. The glass felt like pulling taffy. I highly recommend that you try this out if you get a chance.

glory-hole

Step 9: If the glass begins to cool (as mine did because I took too much time to pull it), the piece must be re-heated in the glory hole.

We got some good photos and video, even though lighting conditions in the studio are challenging (there is a strong backlight). Audio is also a problem as the glory hole and fans are noisy. But I can hear the explanations well enough to at least transcribe the footage, and record new narration over the top when I finally edit all of this together into a longer video.

pulling-out-stem

Step 10: Once the flower shape is done, the flower is pulled away from the puntil along its axis to create a stem for the flower. The first color of cullet becomes the stem color.

If you want to schedule your own lessons to learn to make glass flowers or even blow your own Christmas ornaments, here is the link to the Holdman Studios page:

https://www.holdmanstudios.com/hotshop-classes/

spinning-the-stem-noah

Step 11: If the student desires, the puntil rod can be rolled to twist up the stem.

fire-polish-me

Step 12: The glass is scored with forceps, knocked off the puntil rod, then placed on fireproof cloth and fire polished with a blowtorch, as I am doing here. The flower is then placed in the annealing oven (at left) to slowly cool down over 24 hours.

students-with-flowers

Some of the students at American Academy of Innovation who made glass flowers at Holdman Studios.

glass-display

Displays of glass at Holdman Studios. In addition to classes for making glass flowers, the staff also holds classes for traditional glass blowing including making Christmas ornaments.

Read Full Post »

junk-hat

A hat created by Justin, one of my STEAM it Up students. It is made of upcycled and repurposed materials.

At the beginning of the school year in my STEAM it Up class I had the students vote on which of many possible projects they wanted to work on. The one unit they all agreed on was to make a series of sculptures or cosplay items out of repurposed, upcycled junk. I’ve been collecting materials for years, ever since I created my first “junk” sculpture at the age of 18. I’ve taught this unit three times before in Intersession classes and afterschool clubs when I was at Walden School of Liberal Arts. The results were mixed – the high school students did fairly well, but not so much the middle school students. It seems at that age students are much better at tearing things apart than at systematically planning how to put them back together.

junk-cat

Small junk sculpture of a cat, made by Emily.

My main reason for teaching the class was to actually use up the junk I’ve been collecting and clean out my workshop. Yet it seems I wind up with more stuff before than after – maybe because of the aforementioned “tearing apart” proclivity of middle school students; what was nicely compacted as old VCRs and DVD players is now a series of scattered pieces.

bracelet-and-diagram

A bracelet and a diagram, created for my STEAM it Up class.

So I was a bit reluctant to do this again and bring in boxes of materials that inevitably make a terrible mess in my classroom. But I also knew it could be fun and educational if done right, so I took the chance. I structured this differently than before: each student would need to produce three items. The first would be a small sculpture as a beginning exercise, something that can be easily held in one hand. The second would be a cosplay item or some type of costume piece or wearable sculpture or prop. The third would be a group project where all eight students would plan out a large-scale sculpture together. The second and third projects needed to be sketched out and planned in advance.

little-man

A little man, made from old keys and other recycled objects. Glued together with hot glue and E-6000 adhesive.

They came up with a variety of interesting sculptures for their first and second projects, as seen here. I am also including some of their sketches, although in too many cases they drew the sketches after they made the sculptures. Some of the sculptures involved LED lights, which took some planning and thinking through. The point is to teach them some engineering and materials science skills, and engineers plan everything out in advance. Some students resist this, as they see these sculptures as art forms, not engineering designs, and pre-planning seems to them to impede the creative process. Of course, without planning and thinking through how to attach the disparate materials together, their sculptures tend to fall apart. Glue alone can’t hold a load-bearing member like a leg or arm.

small-soldier

A tiny soldier, made by Noah for my STEAM it Up class.

Which is why we are doing a group project. We decided to build a futuristic Mars colony city (to go with our school’s overall Mars Exploration project – more on this coming in my other blog at http://spacedoutclassroom.com).

space-ship

A space ship sculpture, made from recycled motherboards and other electronic junk.

Two years ago, we had someone contribute a lot of materials to Walden School that were from a doctor’s office or scientist’s lab. I still have no clue what most of the stuff was even for – some of it is probably valuable as antiques. One item was a still for making distilled water, but bought in the early 1970s because of its horrible avocado green color scheme. I managed to get a chemistry professor at Brigham Young University to take it off my hands. But the rest of the stuff was of little use. One item was a plastic autoclave, with multiple levels for sterilizing surgical equipment. There were also glass containers for storing or cleaning microscope slides (I think – based on similar plastic items I’ve seen in the Flinn Scientific catalog).

flying-saucer

A flying saucer that lights up, made by Sam for my STEAM it Up class.

The autoclave looks like a domed city, something out of Isaac Asimov’s Caves of Steel series of books about the android R. Daneel Olivaw and Detective Elijah Bailey. We were looking at the autoclave and other materials and “noodling around,” which is an important scientific and engineering creative process: putting things together that don’t normally go together and seeing what would look good and work toward a harmonious whole. We came up with the glass containers as pillars for the autoclave layers. One of the students suggested offsetting the layers. I sketched these ideas out on my whiteboard, and we worked through how to attach everything together using metal piping from old 1980s brass and glass furniture with bolts and L-brackets, and wire to tie the pillars together to make the whole thing structurally sound.

bracelet-with-led

A steampunk bracelet with LED light, made by Sam.

Teams of students took different layers. The bottom layer (Level 1) will be the industrial and manufacturing center, so one team is making industrial-style equipment and buildings that look like factories and power plants. One team is doing Level 2, which is the main residential sector. One team is doing Level 3, which is the administrative, shopping, hospital, and school level. They built a school from an old calculator and wanted the holes to become solar panels. I remembered having a folder with a shiny metallic-blue cover, so we cannibalized it to become the solar cells. Level 4 is the park, university, and upper class residential sector, and the dome will have spaceports, defense, and communications centers. Already the pieces are shaping up. This is exactly the engineering and materials science I had hoped for when we started this unit.

magic-wand

Magic wand, made by Sarah for my STEAM it Up class.

We are now beginning the construction of the main city levels, but Winter Break has halted the process. It will be our last project for the STEAM it Up class. It will sit upon two wooden plaques, again donated from the doctor’s office, and we’ll create smaller domes for hydroponics and farms, with small Mars rovers (already made by one student who is great at miniaturized sculptures).

stamp-and-ring

Small sculptures created by my STEAM it Up students: a stamp and a ring.

We’ll make Mars landscaping from paper maché and HO scale model train decorations. I also hope to put wires up through the support shafts and add LED lights to the city. The final city will be quite heavy and hard to move around, so it will stay in my classroom and make a great decoration for my newly completed lab. We’re photographing the construction process, I’ll interview the students, and we’ll add all of this to our ongoing Mars project documentary video. I’ll write another blog post in January when we can show the finished sculpture. I would also like to create a virtual 3D model of the finished city so we can animate and label the parts.

mars-colony-sketch

First drawing of our Mars colony, using parts from an autoclave as the levels of our city and glass microscope slide cleaners as pillars.

We still need to pick a name for it. Looking up names for Mars in various cultures, and adding translations for the word “city,” I come up with some possibilities: Aresdelphia, Al-Qahira Madina, Harmakhis Delphi, Hradelphia or Hrad K’aghak’, Huo Hsing Shr, Ma’adim Delphi, Kaseishi, Mangalakha, Martedelphia or Marte Cuidad, Mawrth Dinas, Nirgal Alu, Shalbatana Alu, Simudelphia, Labouville, and Tiuburg. We’ll have to vote on it.

mars-colony-first-attempt

Even without glue or bolts, the layers stack up fairly well in this first attempt to build the Mars colony city. We decided to use two of the boards instead of one so we could add more landscaping and farming domes using HO-scale model railroad decor.

Read Full Post »

rabbitbrush-with-mountain

Rabbitbrush blossoming in October in the southwest corner of Salt Lake Valley, Utah.

In my STEAM it Up class at American Academy of Innovation, my students have conducted an inquiry lab that combines chemistry and technology with history and an ancient art form: dyeing cloth. I reported on a similar lab two years ago, but we have taken it much further and created an investigation that would work well for all chemistry classes without requiring too much equipment or expense. This activity fits in well with the NGSS dimension of science and engineering practices, as it allows students to identify variables, create experimental procedures, collect data, and report results in a fun and engaging way that incorporates art and the history of chemistry. Since dyestuffs are found around the world, there is also a global education component.

collecting-rabbitbrush

My STEAM it Up students collecting rabbitbrush blossoms near American Academy of Innovation (the bright orange building in the background).

We live in Utah, and there are a number of dyestuffs available that were used by Native Americans. Some materials, such as cochineal, were imported and traded for from as far away as modern day Mexico. Others are native to Utah, such as rubber rabbitbrush or Ericameria nauseosa. Our new school was built in a grassland area in the west side of Salt Lake Valley that was formerly used by Kennicott Copper Corporation (now Rio Tinto) as a mine and waste dump. After millions of dollars in cleanups, the site is now the new planned community of Daybreak, and our school is on the west edge near the South Jordan Trax Station. Since it is a former prairie, rabbitbrush grows around us in the empty lots right next to our school.

cutting-rabbitbrush-blossoms

Preparing rabbitbrush blossoms for dyeing.

I had read that marigold blossoms make a good dyestuff, so on the day of our first attempt, I snipped half the blossoms off my marigold flowerbed (which grew up from last year’s seeds). My students and I took a mini field trip about 50 yards from the school where rabbitbrush was growing. It was the end of September and the brush was just beginning to bloom with bright yellow flowers in clusters. We collected several buckets. The species name of nauseosa is well earned, as the smell is a bit nauseating (some students are more sensitive to it and can get itchy eyes, so be careful of this). We also had walnut shells, cochineal, and the marigold blossoms as our dyestuffs.

rabbitbrush-blossoms

Rabbitbrush blossoms ready for boiling in the dye bath.

Students teams of two each decided on a variable to test, such as the type and concentration of dyestuff; the type and concentration of mordant (a mordant is a metal salt such as sodium carbonate [washing soda] or alum powder [hydrated potassium aluminum sulfate]) that helps the dye bind with the fabric threads); the temperature and duration of the dye bath; and colorfastness (if the dye holds its color upon washing). They determined a procedure for testing their one variable while holding the rest constant. We then dyed small swatches of white terrycloth washcloths. A further variable could be the type of fabric used, but I only had the terrycloth for now. I hope to order some untreated cotton and wool yarn and dye them as well.

rabbitbrush-and-marigolds

Rabbitbrush and marigold blossoms ready for dyeing.

Our basic procedure was to boil two Pyrex dishes half full with water. To one the mordant was added, to the other the dyestuff. The cloth swatches were first boiled for 10 minutes or so (depending on the group’s procedure) in the mordant, then the swatch was added to the dye bath.

cooking-rabbitbrush

We soaked white terricloth pieces in a boiling alum solution (the mordant), then boiled them in the rabbitbrush dyebath.

The results were excellent, and we were careful to label all the swatches with Sharpie permanent markers so that we could make comparisons after. We cut the dyed swatches in half and I washed one half at home in my washing machine. Each swatch was scanned into my computer and the eyedropper tool in Adobe Photoshop (you could use the Gimp as well) was used to sample three places on each swatch and record the RGB values. We averaged the values, and compared them to see which combinations of variables gave the best results.

dyeing-with-cochineal

We also dyed terricloth swatches with cochineal and an alum mordant.

We also tried adding more than one dyestuff to the same bath (doesn’t work well) and overdyeing, that is, dye a swatch with one color, then put it in a different color. We also tried an ornamental plant that was growing around our school, which I call firebrush; it has green to pink-red leaves (older interior leaves are more green). The firebrush provided great pigment upon boiling, and turned the cloth a nice pink color, but when rinsed out, the color gradually changed to a medium green. I suspected it might be a pH indicator, so I dipped part of one green swatch in vinegar and found it turned bright pink again. Only those two colors – green when neutral, pink in an acid. But it is apparently a good indicator and a fairly colorfast dye.

first-swatches-2016

Our first dyed swatches, labeled with permanent marker. The left swatch is rabbitbrush, the second is marigolds, the third is cochineal without any pH modification, the fourth from left is cochineal with Cream of Tartar added, the last (right) swatch is cochineal with vinegar added.

As a further experiment, we tried adding Cream of Tartar or vinegar to the cochineal to see if we could turn it from magenta-burgundy to more of a bright red color or even orange, with mixed success. We got a bit more reddish color with Cream of Tartar, but never got to orange. Reading websites and other sources, I found that we need a stronger organic acid that wouldn’t dilute the dyebath, such as citric acid. To turn the cochineal more purplish, ammonia can be used. We also tried cochineal with rabbitbrush but still did not get an acceptable orange – just a salmon pinkish color. We need orange because our school colors are Innovation Orange (you can see our building from miles away, as the photos show) and Titanium (we are the Titans). We could also some other dyestuff, such as madder root, sandalwood, or safflower.

swatches-2016

Swatches from our dye experiments. The ones on the bottom are pieces that have been washed to test colorfastness. The brown swatches are from walnut shells and hulls soaked in water over several days. Other swatches test different types of mordants (alum versus soda ash versus Cream of Tartar) or different concentrations of dye.

We experimented for several weeks with different combinations and the students wrote up their final conclusions. Here is what we learned: The best mordant for rabbitbrush, marigolds, and cochineal is alum powder. Cream of Tartar tends to gladden (or lighten) the colors, whereas soda ash (sodium carbonate) tends to darken or sadden the colors. Cochineal was less colorfast than we expected based on previous experiments, and tended to bleed all over the other colors when washed. Walnut shells seemed to do best with soda ash as a mordant. Overdyeing was only partially successful; we were trying to get a good orange and never did. The marigolds didn’t make a good orange either – but did do a nice golden brown color. Walnut shells with rabbitbrush made a nice golden tan, but cochineal with rabbitbrush depended greatly on which was dyed first; the overdye tended to eliminate most of the first dye.

fireweed-results

The results of our experiment with firebrush, an ornamental shrub with green inner leaves and scarlet outer leaves and wicked thorns. The dyebath was bright pink, as in the swatch second to left, but when rinsed out it turned green as in the swatch second from right. I took a rinsed green swatch and dipped it in vinegar and the bottom turned pink again. Firebrush is apparently a pH indicator.

A final variable is to test different fabrics. I ordered more dyes, including madder and indigo, from Dharma Trading Company in November as well as untreated merino wool yarn and cotton cloth, with more alum powder and citric acid. Adding the citric acid to the cochineal did indeed turn it red (and eventually orange). Adding ammonia turned it purple. It worked wonderfully on the untreated wool yarn; I dipped one end in the regular cochineal and the other end in the cochineal with citric acid and got a beautiful variegated red to burgundy-crimson skein that held its color well upon rinsing and washing. The cotton cloth didn’t hold as well; I make the cloth purple to orange and even let it set overnight in the dyebath, but upon rinsing all the cloth turned back to a light magenta. The rabbitbrush made a nice soft yellow for the merino wool yarn.

cochineal-dyed-yarn

Merino wool yarn dyed with cochineal. I varied the pH by adding citric acid to get the brighter red colors, and dyed one end of the skein with regular cochineal and the other end with citric acid treated cochineal to produce variegated yarn. Now to crochet it into a sweater . . .

My wife is amazing at crocheting, and my ultimate STEAM art product will be for her to use our naturally dyed merino yarn to create a sweater and a beanie. I also want use the dyed pieces of cotton to make a quilt in the shape of our school logo. I know several professional quilters who can do this for us. If the cotton isn’t accepting the dyes, then I must experiment further. Perhaps I didn’t soak the cloth in the mordant bath long enough. I am still experimenting with getting blue colors from woad and indigo, but more on this in a later post.

Read Full Post »

 

Yours Truly in 3D

Yours truly in glorious 3D plastic. I modeled my head using Sculptris by Pixologic, then added the base in Daz3D Carrara. I had the printer set on the fastest speed and one shell, so the top of the base did not get covered very well.

3D printers have become all the rage in STEM classrooms. I’ve been salivating over them since they first became affordable for schools. We purchased one at Walden School just before Thanksgiving and I’ve kept it busy ever since. However, like any new technology, if I didn’t have a long-term plan for how to use it or a clear purpose in mind, it will be a new toy for a month or so and then sit idly in a corner gathering dust. They are great for someone who is willing to experiment to get print jobs to work consistently. I had quite a few failures at first, and still have them occasionally. The printers aren’t cheap and neither is the plastic. But with these caveats in mind, they can be truly useful additions to your STEM classes.

Lea - Camille with studs

Two of my MYP Design students printing out plastic snaps they designed.

I’ve taught 3D modeling classes for many years, and have incorporated 3D technologies into many of my science projects. I’ve written about several ways of doing this in previous blog posts, including the last post on modeling Greek philosophers in 3D. My students have become proficient at modeling any kind of object they need, so a 3D printer was the next logical step. Since I am teaching mostly engineering, computer science, and design classes this fall, we have need of a way for students to manufacture prototypes of their designs. For these reasons I convinced the powers that be to purchase a 3D printer.

All 3D prints

Some of the successful print jobs we’ve done so far. Most of the objects have been done as experiments to learn and test the workflow from 3D model to print.

After a lot of research, I decided to buy a Monoprice dual extruding printer – available for about $700. It came within three days of placing the order (woo-hoo!) and my IB Design Technology students had it assembled in about two minutes. Then came the process of learning how to use it to get consistently successful prints.

This isn’t as easy a process as some may think – if you have the notion that it’s like plugging in an ink jet printer and sending a print job from any software (in other words, plug and play) then you haven’t studied up enough on how these printers work.

Heraclitus failed

What happens when the model detaches from the print platform. It slid aside but continued to print, leaving the “spaghetti brains” hanging under the top of his head. The grid on the bottom is the raft. It also created scaffolding under the beard, which has been removed.

The process is called additive manufacturing and involves creating an object by extruding a thin plastic filament onto a flat print platform. The platform moves slowly downward (z-axis) as the extruder moves sideways and in and out (x and y-axes) to build one layer at a time. Think of using a hot glue gun to build up a contour map of a landform. For this all to happen, the 3D object must be split into layers by the printer’s software and a pathway generated for the extruding nozzle so that it lays down the filament without it getting tangled or dripping. This pathway/layer split is referred to as g-code.

Tyrian Purple 2

A model of a molecule of Tyrian Purple dye. This dye was extracted in the Phoenician city of Tyre on the coast of Palestine by crushing the shells of murex sea snails. One snail would produce only a drop of the dye. It was so expensive only the Roman nobility could afford to wear clothing dyed with this color, hence the phrase “born to the purple.” It is my favorite molecule. The large atoms on each end are bromine, which provides the burgundy/purple color.

 

To get the 3D model into a form that can be split into g-code, it must be saved or converted into an STL format. There are online converters for doing this. Of course, even before that, you have to know how to make the 3D objects in the first place unless you are content to simply print out someone else’s models, such as those found on Thingiverse or at the NASA 3D website. In that case, you aren’t realizing the potential of this device for modeling, engineering, and prototyping of student-created projects.

Sarah portrait

Student self-portrait. The head and hair were done in Sculptris, the base and text in Carrara. It then was exported as a 3DS file and converted to STL, then loaded in ReplicatorG to generate the g-code layers.

If this process sounds complicated, it is. But that’s not the half of it. If your models have overhanging parts, the printer will just create a lot of plastic “boogers” (see the failed print of Heraclitus and the “brains” hanging out of his disconnected skull to see what I mean). So the software creates supports or scaffolds to hold up the overhangs, which must then be removed and sanded down. The software also creates a raft or grid of plastic underneath the model to help it stick to the print plate. That is the grid you see under the failed Heraclitus.

Black plastic objects

Our printer allows objects to be printed with two colors at once. I haven’t attempted that yet, but here are some objects with black plastic. The D is part of my family’s cattle brand, the Lazy Bar D ranch.

There are many problems that can occur. If you print large, flat objects with square corners, then the plastic can cool too quickly with both sides exposed and the corners can peel up and curl. Although the print platforms are usually covered with a tacky tape such as Kaptan, you can still have print jobs come loose and start sliding around as the extruder nozzle moves. This is what happened with the failed Heraclitus – it did well up to his eyebrows, but the continued wiggling of the nozzle head caused the raft to break loose, so the printer continued the job off to the side as the model slid away in stages. Kind of cool looking, but the print wasted eight hours and some plastic. Now I have to start it over again and tape it down better.

Democritus and Aristotle prints

Printouts of Democritus and Aristotle. To provide better quality for the print, I created a sloped base with rounded edges to prevent curling. Both models were created using Make Human for the heads, then imported into Sculptris to add the hair, beards, and eyebrows. Finally, the models were brought into Carrara to add the bases and text before exporting as a 3DS file.

I have also had an issue with the workflow itself. To make Heraclitus (and Democritus and Aristotle) I started with a free program called Make Human, which allows one to set morph targets on a generic human figure to make the features look a particular way. I loaded in photos of the philosophers to use as referents. Then I exported the model as an OBJ and imported it into Sculptris, another free program done by Pixologic, the same company that does the leading character modeler Z-Brush. It works like a ball of clay that you push and pull into shape. I used it to add the hair, beards, and eyebrows. Then I exported it again as an OBJ and imported it into my full 3D modeler, called Carrara by Daz3D (but you could use Maya or Blender, etc.). In Carrara, I decapitated the head from the body using a Boolean command, then added the base and letters. I finally exported it as a 3DS model, converted it to STL using Online 3D Converter, then loaded it into the ReplicatorG software for generating the g-code. By the time I was done, this model had been through five different software packages.

Cow parts and snaps

Some student design projects printed out. The cow parts (head, legs, and tail) on the right are for a toy cow. The body of the cow had some issues printing, and the C-joints on the legs didn’t quite fit. The snaps on the left worked with the smallest positive size and the split hole configuration. The MYP Design students planned, created, modeled, and tested these prints. Now they need to make revisions. This is the engineering process.

This is a complicated process, and the model can fail anywhere along the way. I’ve had some trouble getting Carrara to export the models correctly – it says they are there, but have no data in them. I think these are models that have too many polygons, such as those where the entire head and hair are done from Sculptris. Using Make Human keeps the head model’s polygon count reasonable.

Mare Fecund printouts

Two printouts of Mare Fecunditatis on the Moon. I started with LOLA data from the Lunar Recon Orbiter mission, loaded it into Adobe Photoshop in Raw format, selected the section I wanted and loaded it into Daz3D Bryce as a grayscale height map, which turned it into a terrain object. I exported it as a 3DS file, added the base and letters in Carrara, and so on. The print on left was done at fastest print speed and didn’t fill in well. The one on right has two shells and reduced print speed, but still lacks detail. My next attempt will be at a 45° angle with supports underneath to gain the better resolution of the x and y-axes.

I’ve tried making 3D terrains of Mars and the Moon based on Mars Global Surveyor MOLA and Lunar Reconnaissance Orbiter LOLA data. I load the grayscale heightmaps into Bryce (another Daz3D program), then export a 3DS file into Carrara to build a base and text. The final results have had issues with holes in the bottoms of craters, text that doesn’t show up well, and insufficient vertical exaggeration to see any details. I also had trouble with the first attempt to print this terrain (of Mare Fecunditatis on the Moon) because I only had one shell and had the printer on fastest nozzle extrusion speed and travel rate, so the top was not solid enough.

 

But . . . with all these problems, I am succeeding now more often than failing. That is what engineering is all about, after all – you have to learn how to fail until you succeed. I’ve tried a variety of different print jobs, found out the trouble spots and (mostly) how to correct for them, and I am ready to start printing out student projects now that we are approaching the end of the semester.

Hackathon 3D 4

Students learning 3D modeling using Sculptris at the Utah County Hackathon on Dec. 12, 2015, sponsored by 4-H.

 

 

On Saturday, Dec. 12, 2015, I presented a session at the Utah County Hackathon sponsored by the local 4-H Club. I took the 3D printer along as well as some laptop computers from my school and taught about 24 kids how to use Sculptris and how to do 3D printing. The session was a great success. There was a man named Colby there who had quite a bit of experience with 3D printing. He gave some advice that I will try out soon: First, I can get better resolution by standing my terrain models on their side. These printers have better resolution in x and y-axes than in the vertical z-axis. I just need to build some buttress supports to hold it up that can be removed later. He suggested using PEI (polyetherimide) tape, which becomes tacky when heated on the print platform, then less sticky when cool, so jobs won’t slip while printing but still come off cleanly when cooled down. He gave me some ideas for better temperature settings – I might have my platform temperature too high. There are still many experiments to try.

Hackathon studs and printer

3D printer and students learning Sculptris at the Utah County Hackathon, Dec. 12, 2015.

So, to summarize the lessons learned:
1.) Don’t expect a 3D printer to work perfectly right out of the box. There are a lot of tweaks to do, including calibration, print platform leveling, temperature adjustment, feedrate adjustment, etc, etc. to do before you will be consistently successful. Read up on the forums and ask lots of questions before deciding which printer to buy, and be prepared to experiment.
2.) Unless you are content with printing pre-created models, you should be ready to teach (or facilitate) your students learning how to do 3D modeling in the first place, and how to convert their models into the STL format needed for 3D printing. There are many fairly easy to learn 3D programs out there, including Sculptris, Sketch-Up, Tinkercad, and Make Human. Maya is also free for students and teachers, but the learning curve is steep. Blender is open source and free, but the interface is hard to learn even for experienced modelers.

Hackathon 3D 2

Students learning Sculptris at the Utah County Hackathon on Dec. 12, 2015. They are building alien heads. They enjoyed learning the program and seeing how to do 3D printing.

3.) Try to get a printer with a heated print platform and variable temperatures and extrusion rates. One size does not fit all jobs here, especially if you want to print with more than one type of plastic. ABS expands more when heated than PLA plastic, so it tends to curl more as it cools down. It also requires a higher nozzle temperature to melt it.

4.) Keep an eye on print jobs. My failed Heraclitus started out well, so I taped the edges and left it overnight to print. Somewhere around six hours into the job, it detached from the print plate and caused the fatal print defects shown. Print jobs also sometimes stop for no reason. You won’t be able to start them up from where they left off. It will just be wasted plastic. You must keep trying, and be patient.

Electroneg and Tyrian purple

Final printout of the Tyrian purple molecule. The black model is of the periodic table of elements, showing the property of electronegativity for each element. This was done by typing the values into a TXT file, then importing it into ImageJ software using Import-Text Image, then converting the grayscale image into a height map for Daz3D Bryce. From there, we used the same process as the 3D Moon models.

5.) Have a plan and a purpose for why you need a 3D printer. Otherwise they can be frustrating and ultimately unsatisfactory for you. If you haven’t integrated 3D data analysis or modeling into your classes already then a 3D printer will be useless for you. If you want some ideas how to do this, look at some of my other posts, such as this one on creating 3D models of periodic properties of the elements: https://elementsunearthed.com/2014/05/10/visualizing-periodic-properties-of-the-elements/ . Here is a photo of a 3D print job done from one such model, showing electronegativity, as well as a model of the molecule for Tyrian Purple dye.

6.) Some supplemental materials will help. Buy some Aqua Net Super Hold odorless hair spray (purple can) and spray it onto a paper towel, then rub it onto the tape on the print platform to improve the stickiness. Even with that, the jobs might still work loose. Some people use glue sticks or a gel adhesive. You will need a roll of Kaptan or PEI or blue painters tape to put on the platform if the tape starts to peel up.

Indi portrait

Student self-portrait using Sculptris and Carrara.

7.) Avoid large flat objects with sharp corners. They tend to curl up when cooling. If you build in supports, you can print up to a 45° angle without scaffolding, and therefore take advantage of the better resolution of the x and y-axes.

Good luck. Let me know what types of projects you attempt, and we can swap ideas. As you can see from the photos here, there are many possibilities for chemistry classes alone.

Hackathon 3D 1

Students working with modeling clay to learn the concept of 3D modeling. This is at the Utah County Hackathon on Dec. 12, 2015 at the Provo Library. The image on the screen is of the ReplicatorG software. It is printing my family’s cattle brand, the Lazy Bar D. Unfortunately, the bar wasn’t quite level with the bottom of the D in Carrara, so a raft wasn’t printed under it and it went at bit wobbly and timey-wimey.

Read Full Post »

Bronze horse on display at Adonis Bronze in Alpine, Utah

Bronze horse on display at Adonis Bronze in Alpine, Utah

As part of my unit on the history of chemistry, I wanted my students to experience an ancient art. I have written before that, in my opinion, there were three major threads that led to modern chemistry: Greek Matter theories (more on that in my next post), Alchemy, and Artisans. Some of the art forms and technologies invented during Roman and Medieval times are still practiced today in essentially the same fashion, such as stained and blown glass, ceramics, sword making and blacksmithing, jewelry, weaving and fabric dyeing, and some types of metallurgy.

Hoop Dancer, a bronze statue on display at Adonis Bronze

Hoop Dancer, a bronze statue on display at Adonis Bronze

We have some newer tools and a better understanding of how matter works, but in many cases the old techniques haven’t changed much. For example, a glass blower from the Middle Ages would have no problem working in a modern workshop. We have better heating sources for the glory hole and annealing oven, can use a blowtorch to keep areas hot, and have substituted wet newsprint for the smelly leather they used to use. But that’s about all that’s changed.

Blacksmith statue at Adonis Bronze, made with the lost wax technique.

Blacksmith statue at Adonis Bronze, made with the lost wax technique.

I did some searching and found there were several workshops in our area that do bronze casting using the lost wax technique known from antiquity, with a few modern additions. I arranged for my chemistry and 3D modeling students to tour Adonis Bronze in Alpine on Friday, Nov. 7, 2014.

Sketches of horses by Leonarda Da Vinci in preparation for creating the bronze horse.

Sketches of horses by Leonarda Da Vinci in preparation for creating the bronze horse.

Students were prepared by discussing how the lost wax technique works and giving examples, such as Leonardo Da Vinci’s huge bronze horse for the Duke of Milan, Ludovico Sforza, that was never finished. He had devised a method for making the horse in a single bronze pour, and he drew extensive sketches. He even made a full-scale clay model of the horse which stood 24 feet high. He was collecting the bronze for it when war broke out; the French invaded northern Italy and attacked Milan in 1499. The Duke was forced to melt the collected bronze down into cannons, but the French still won. They used the clay horse model for target practice.

Da Vinci's sketch for how he would pour the bronze.

Da Vinci’s sketch for how he would pour the bronze.

A 1977 National Geographic article on Da Vinci included sketches of the lost horse, and a retired American airline pilot named Charles Dent dedicated his art collection to the project. A foundation was created and an artist named Nina Akamu was hired. She used Da Vinci’s original sketches to create a new plan for the horse. Billionaire Frederik Meijer helped to fund the project, and two full-sized horses were cast in 1999, 500 years after the original was supposed to be done. One is at an outdoor museum in Grand Rapids, Michigan and the other stands outside the racetrack in Milan. A smaller scale version is located in Allentown, PA, the home of Charles Dent.

Completed horse statue in Grand Rapids, MI

Completed horse statue in Grand Rapids, MI

We carpooled up to the foundry and began in their main exhibit hall. We divided up into groups, and I handed out cameras to each group so we could record everything and eventually make a video.

Adonis Bronze foundry in Alpine, Utah

Adonis Bronze foundry in Alpine, Utah

The modern version of the lost wax technique has quite a few steps. First, an original model is built out of oil-based clay over the top of an armature, or wire frame. For larger sculptures, a smaller model is created then scanned digitally into 3D. It is scaled up on the computer, then a physical version is cut out of foam using a 3D milling machine.

Yours Truly being attacked by a dragon. It was modeled in 3D on a computer and cut out of foam with a milling machine at Adonis Bronze

Yours Truly being attacked by a dragon. It was modeled in 3D on a computer and cut out of foam with a milling machine at Adonis Bronze

Sometimes the foam model is all that is needed. For example, at last summer’s Fantasy Con in Salt Lake City, a 30-foot tall dragon was built out of foam pieces and assembled and painted. The dragon was designed and cut here at Adonis Bronze. They also made large swords and shields and other display pieces, some of which were in the hallways here.

Foam milling machine used to cut the pieces for the dragon.

Foam milling machine used to cut the pieces for the dragon.

Once the original model is done, it is coated in a silicon rubber gel to make a negative mold. That gel, colored blue, is coated in plaster to reinforce it.

Clay sculptures used as original molds for the bronze statues.

Clay sculptures used as original molds for the bronze statues.

A reddish-brown colored wax is melted and kept bubbling in vats. It is scooped up with metal pitchers and poured carefully into the silicon mold to coat the inside and make a thin layer. The final bronze statues are usually not solid, as that would take too much bronze. They are usually less than ½ inch thick.

Balboa Bars - vanilla ice cream dipped in melted chocolate and dipped in nuts or sprinkles.

Balboa Bars – vanilla ice cream dipped in melted chocolate and dipped in nuts or sprinkles.

The flexible silicon is then pulled away from the wax positive. Any imperfections are fixed and wax cups and sprues (spouts or channels) are added to direct the flow of the bronze to all parts of the mold. The silicon molds are stored for future use in case extra copies of the statue are needed.

Clay model for Wingless Victory statue.

Clay model for Wingless Victory statue.

To create another negative mold that will hold the hot bronze, the wax positive is dipped into a thin ceramic slurry which coats the outside and inside of the hollow pieces. The slurry-coated wax is then dipped in sand. The sand pot has air blown up through it so that the ceramic slurry can be quickly inserted and coated.

Silicon rubber mold for Wingless Victory

Silicon rubber mold for Wingless Victory

It’s kind of like making a Balboa ice cream bar at Balboa Beach in southern California. There, a chocolate or vanilla ice cream bar (like the wax positive) is dipped in a chocolate coating, then immediately dipped into nuts or sprinkles while the chocolate is still liquid. Here, the wet slurry is dipped into sand, then dipped into liquid cement and allowed to dry. This ceramic/cement negative mold is hard enough to withstand the hot bronze without cracking. Vents are also added so that air can escape as the bronze is poured in.

Vats of melted wax ready to pour into silicon molds.

Vats of melted wax ready to pour into silicon molds.

The molds are placing upside down in an oven and heated to melt out the wax, which is collected and re-used. This leaves a hollow area for the bronze. The molds are then placed into a kiln and heated to the temperature of the molten bronze, about 2100 ° F (1200 ° C). The bronze is melted in a blast furnace inside a balanced crucible. The bronze casters wear thermally insulated suits and carefully pour the bronze into the heated ceramic/cement molds.

Pouring hot wax into the silicon rubber mold.

Pouring hot wax into the silicon rubber mold.

Once the bronze and molds cool, the mold is broken off and the bronze pieces are “chased” – the cups and sprues are cut off along with any extra bronze that might have leaked around the edges of the mold.

Removing the silicon rubber from the wax positive.

Removing the silicon rubber from the wax positive.

If the statue is large and made from separate pieces, the pieces are then assembled together using welding torches and metal staples. Sandblasters are used to smooth the seams and staples so the surface appears continuous.

Wax mold after chasing, with the halves of the mold combined and cup and sprues (distribution channels) added.

Wax mold after chasing, with the halves of the mold combined and cup and sprues (distribution channels) added.

To get the right finish and colors in the bronze, the statue is sent to a room where chemicals (acids, bases, finishes, etc.) are added to create a desired color. Sometimes the color is created by heat treating – the bronze, which is an alloy of copper and tin, will take on a range of purple and red hues simply by heating areas to just the right temperature with a blow torch. The final coloration is called a patina. The surface is then waxed to preserve it from oxidizing.

Coating the wax with a ceramic slurry to make a negative mold.

Coating the wax with a ceramic slurry to make a negative mold.

The final step is to add a base, usually of wood or marble, then prepare the statue for shipping and display.

Coating the slurry in sand. Air blown up through the sand to make it easy to coat the slurry.

Coating the slurry in sand. Air is blown up through the sand to make it easier to coat the slurry quickly.

It was a fascinating tour. I asked many questions, and got some great things on tape. They were not doing a bronze pour today, so at some point I need to get back to videotape that. They were nice enough to give me a packet of photos showing a statue of a woman going through the entire process. I scanned the photos and created a Powerpoint slideshow, which I am linking to here: Adonis Bronze slideshow-s

Cement-sand-clay slurry casts with wax inside. Notice the sprues that distribute the bronze once the wax is melted out.

Cement-sand-clay slurry casts with wax inside. Notice the sprues that distribute the bronze once the wax is melted out.

I am amazed at how many of these steps haven’t really changed from Da Vinci’s time (or earlier – some examples have been found in Israel that date to 3700 BCE). He did not have silicon rubber to make the negative mold from the clay, and so a direct technique was used. A core of clay was dipped in wax and the wax carved into a final shape.

Melting the wax out of the mold. This is the

Melting the wax out of the mold. This is the “lost wax” step. It leaves a hollow for the bronze to fill.

Sprues were added and the whole thing buried in a compacted sand pit with drains in the bottom. The wax was melted out by heating the sand from the sides or underneath, leaving a clay core supported by rods and a hollow negative space surrounded by hot sand. The bronze was then poured in, allowed to cool, and the whole statue dug out and filed and polished to its final shape. How Da Vinci would have accomplished this with a 24-foot high horse is beyond me.

Pouring the molten bronze into the pre-heated ceramic/cement molds.

Pouring the molten bronze into the pre-heated ceramic/cement molds.

At some point I hope to find a way to duplicate this process on a small scale using pewter or another alloy with a low melting point. I know small heated crucibles are available to melt pewter. Now all we need is a way to re-create the lost wax technique to make the molds.

Assembly of the Wingless Victory statue. Large pieces are welded and stapled together, then smoothed and sandblasted to remove seams.

Assembly of the Wingless Victory statue. Large pieces are welded and stapled together, then smoothed and sandblasted to remove seams.

Perhaps we can carve the sculptures out of wax and coat them with plaster-of-Paris, then melt out the wax. We would have to be careful to not dehydrate the plaster. Or perhaps the molds could be made with wet clay and fired, then filled with metal. It would be a challenging project. If anyone has done something like this, please let me know.

Acids, bases, metal salts, and heat are used to create different colored patinas on the surface.

Acids, bases, metal salts, and heat are used to create different colored patinas on the surface.

Wingless Victory on display in the showroom at Adonis Bronze

Wingless Victory on display in the showroom at Adonis Bronze

Feather dancers, a statue on display in the showroom of Adonis Bronze.

Feather dancers, a statue on display in the showroom of Adonis Bronze.

An elk and Mark Twain. Notice the differences in the patina colors on the elk.

An elk and Mark Twain. Notice the differences in the patina colors on the elk.

Other clay statues. They are built around a wire and metal rod armature.

Other clay statues. They are built around a wire and metal rod armature.

Read Full Post »

With the beginning of the 2013-14 school year, I’m pleased to announce the start of a new program in my classes at Walden School of Liberal Arts. I call it the STEM-Arts Alliance, and it’s an attempt to bring artistic expression and creativity into my STEM (science, technology, engineering, and math) courses.

Receiving the award from CenturyLink Foundation.

Receiving the award from CenturyLink Foundation.

I have several reasons for doing this. First, I hope to broaden our students’ participation in upper-level science and technology courses. Given the size of our school, we could have more students taking courses such as chemistry, physics, astronomy, anatomy, and environmental science. We are a public charter school with a liberal arts emphasis, which means we get a high percentage of creative, passionate, out-of-the-box-thinking students. We need people like this to choose careers (or at least become more literate) in the sciences. My solution is to broaden the appeal of our science and technology courses by integrating the students’ strengths and interests. This is not to say I’m making my courses any less academic; it just means we’re using the arts as a continuing theme, by looking at the art of science, the science of art, and the history of both.

Second, I happen to love drawing and painting and rarely have time to do it. My artistic passion is somewhat satisfied by 3D animation and video production projects, but there’s just something about holding a paintbrush or an ink pen and seeing a project emerge from paper. I’ve been pulled in four different directions all my life; I seem to keep swinging between science, media design, history, and fine art. So I’m creating lesson plans and projects that incorporate all four of these areas, projects that are based around my own passions.

Award letter for the ING Unsung Heroes Award. It's always a good day when you receive one of these!

Award letter for the ING Unsung Heroes Award. It’s always a good day when you receive one of these!

Third, I hope to enhance the stories of science we’re telling by bringing my students’ artistic skills to bear on science topics. When I did some line drawings of Greek matter theorists (such as Thales, Parmenides, etc.) I found that they were frequently downloaded. Apparently, people are tired of finding only the few standard photos showing busts of Aristotle and his colleagues in some museum. Why not put myself (and my students) to work, creating new images in the cause of science education and fine art? I soon hope to complete the Greek Matter Theories videos I began four years ago, and I need more materials and images. Now I can do two things at once. I can draw illustrations of Aristotle or Democritus for the Greek videos while simultaneously teaching the chemistry of ink or paint pigments.

Fourth, our school is building up to become an International Baccalaureate (IB) school with a Middle Years Programme starting this year and growing to encompass 7-10 grades, with an additional Diploma Programme in our upper grades. The chemistry and technology courses are very much based on design projects and inquiry experiments while maintaining high academic standards. This is very much the model I have been working toward anyway, and my STEM-Arts Alliance should help my students transition into the IB chemistry and technology classes.

But to successfully implement my ideas, I needed funds and so I’ve been applying to every grant I can find. During this spring, I applied for five different programs, grants, or competitions, with three being due within two days of each other. True, it was made easier because all my proposals were similar, hoping that some would succeed. And they did! Two grants have come in. The first was $1250 from the CenturyLink Foundation. I received one of those large fake checks in May. I began purchasing equipment and supplies during the summer, including a GoPro camera, an audio recorder, a green screen, and a digitizing Bamboo tablet. These technologies will add to our ability to record video and audio, create digital images, and document what we’re doing in chemistry and astronomy in our two blog sites. We also purchased a new LEGO Mindstorms EV3 kit so we could start an afterschool robotics club. Here is a link to the CenturyLink Award: http://www.centurylink.com/static/Pages/AboutUs/Community/Foundation/teachers.html.

Receiving the award from Steve Platt of ING Foundation.

Receiving the award from Steve Platt of ING Foundation.

My second success was $2000 for the ING Unsung Heroes Award. They provide two such awards per state, and I thought I had a pretty good chance of winning one. I’ve purchased a new color laser printer (so much better than using the ink jet) as well as chemicals and supplies for the various lessons and projects we’ll be doing this year. I received a second large fake check from Steve Platt of ING this fall, as well as a nice plaque. I am still purchasing materials through this grant. Here is a link to the awards page in case you want to apply yourself: http://ing.us/about-ing/responsibility/childrens-education/ing-unsung-heroes.

So far my students have worked on a number of different projects in several different classes and at Timp Lodge. They’ve accomplished the following:
1. We set up a summer media design class that culminated in organizing the video clips and recording green screen narration for the SOFIA video I’m putting together.
2. We made tie-dye shirts at Timp Lodge.
3. We made marbled paper using dilute oil paints floated on water (also at Timp Lodge). 4. Students edited the SOFIA videos and built 3D objects from SOFIA’s interior in the middle school Creative Computing classes.
5. Students created iron-gall ink in chemistry and used it to draw pen and ink illustrations of science history concepts.
6. We started the robotics club after school, and students have built a rover capable of picking up small objects and moving them to new locations.
7. Students turned periodic properties of the elements into 3D models.
8. They built paper Christmas tree ornaments representing chemical elements.
9. Students created homemade watercolor pigments and used them to make paintings of science history.
10. They wrote and narrated podcast scripts on astrobiology topics.

I’ll report in more detail on each of these in future posts. It seems that we’re still just getting started, but in reality we’ve been very busy and very successful already. All projects have a fine arts component, a technology component (all paintings are scanned and cleaned up in Photoshop), and a history component. We are literally creating modern versions of old formulas used in making art for thousands of years. And it feels great to have all my passions pulling in the same direction.

Most of these activities have been in chemistry class. I am starting there as an initial run through, testing the recipes I’ve found online so that I can perfect the processes for future classes. The chemistry students have done exceptionally, and they’ve proven to have excellent art skills on top of learning chemistry and experimenting with different formulas. I hope to set up a dedicated Science and Art class during our Intersession that will incorporate all these activities and hopefully more besides. I’ve written another grant to the Moss Foundation just to get an electric kiln to do Raku pottery. So far I haven’t received word, but should soon. I might do a second class for making junk sculpture out of found objects. It will be a combination of materials science, design, and engineering.

I’m having a lot of fun researching and designing these projects, and I hope you’ll have fun reading about them and trying them out yourselves.

Read Full Post »