Feeds:
Posts
Comments

Posts Tagged ‘innovation’

As educators we don’t often question the need for standards. After all, without standards, teachers would teach whatever they want to. Yes. Exactly.

What I am about to say will be considered as educational blasphemy. I have to say it anyway. Here goes: Education standards do more harm than good.

There, I’ve said it. Now I need to defend my claim logically.

When state boards of education and national committees get together to write new standards, they are doing so with the intention of improving learning outcomes in a subject area such as history or math or science. But I argue that higher standards have not and will not lead to improved student outcomes for several reasons: first, standards become an end unto themselves instead of being a means to the end of improved outcomes. This means-ends inversion leads to a myopic focus on meeting standards, as evaluated by high-stakes tests, above all else and to teachers being pressured to teach to the tests in a misguided effort to increase scores. Even if schools are able to increase scores, it does not mean that students are learning more in any long-term fashion. When school funding is tied to meeting standards, district leaders and principals put emphasis on test scores and encourage teachers to do what is needed to improve them. Shifting time and focus toward passing tests moves students away from inquiry experiments, creative projects, and other activities that make learning fun and meaningful, leading to lower motivation. As classes become boring and meaningless, student learning actually decreases and creativity is stifled. The student outcome that society needs the most is creativity. Education standards therefore hurt society.

Second, standards are meant to be minimal guidelines. Any competent teacher should be able to meet standards and go beyond them to teach with the passion that leads to extraordinary education. Yet teachers who do so and step beyond the bounds of the state standards are often censured and cautioned to stick to the approved curriculum. Teachers are forced to play it safe in order to keep their jobs. Extraordinary education entails risk; playing it safe will never lead to students caring deeply about a subject or learning how to be creative innovators within it.

Third, the very notion of standards is based on the idea of standardization of education, to make all education everywhere the same experience for all students for a particular subject. It is saying that all students are like the Model T Ford, which Henry Ford said one could buy in any color as long as it was black. Our educational system has been based for far too long on an obsolete assembly line model, with students as raw materials entering the factory floor, moving through standard classes taught by standard teachers and emerging as standard models of some outdated ideal of an educated high school graduate, fit only to fill standardized roles in standardized jobs. Businesses complain that they can’t find enough graduates who can think for themselves, develop creative innovations, communicate and collaborate effectively, or even complete basic tasks like reading directions or doing basic math problems that come up. The graduates might have passed a standard Common Core math class and know how to do standard rote problems, but when they face anything in the real world that deviates from the narrowly specific problem sets they are used to, they cannot solve the problem. Since life is one big story problem, they are ill equipped to develop creative solutions to even small challenges.

As world problems increase and deepen in complexity, we don’t need standardized graduates. We need graduates who are out-of-the-box thinkers, creative innovators, and problem-solvers who can communicate and collaborate globally. We think that by increasing educational standards we will somehow get the types of graduates we need, but that is simply not happening. No Child Left Behind and its successor, the Every Student Succeeds Act, have attempted to raise national standards with the goal of improving student learning outcomes. They have failed miserably. Students are less equipped for life now than they were 20 years ago before these laws were passed. This is because standards do not, by themselves, raise educational quality. In fact, they can lead to a vicious cycle of diminishing educational quality as shown by the diagram at the top of this post and again here:

Although education standards are created with the best of intentions, they often do more harm than good.

Let’s start at the top. National commissions, businesses, and parent groups are successful in their calls for raising national or state educational standards and legislatures have passed laws to hold schools accountable to meet them. In order to hold schools accountable, schools must be assessed and the easiest way to do that is through mandatory testing of all students in critical subjects such as math, science, and English. Those schools that do not measure up are deemed unworthy and labeled as failing schools. Principals at failing schools face getting fired, so they encourage teachers, in many subtle and not so subtle ways, to do what they must to bring up test scores. Facing censure themselves, the teachers start to spend more class time teaching specifically to the test, drilling students and forcing them to memorize enough facts to get through the tests. At the same time, since only certain subjects are being tested, schools tend to put more emphasis on those subjects and provide less time in the daily schedule and less funds toward other, non-tested subjects such as art, music, and humanities. This means that students have less opportunities to learn creative subjects. With teachers now spending more time on drill and practice of testable facts, less time is available for inquiry labs, hands-on activities, and creative projects. Classes lean more toward rote learning and become boring and meaningless to students, who now have even less opportunity to find creative outlets. They do not learn how to collaborate, communicate, solve real problems, experiment, invent, tinker, make, or create. They do not learn how to be innovators, only learning how to regurgitate facts on tests. These graduates struggle in colleges and are not prepared to solve the problems they encounter in real jobs. Employers and business leaders call out for students who are better prepared and ask state boards and legislatures to raise standards. And around and around it goes. It is a vicious cycle.

The worst part of this cycle is the wasted potential I see daily in students who are convinced they are not creative, who prefer to read textbooks and answer questions at the end of the chapters because that’s what they’re used to and know how to do and who never get past the lowest level of factual knowledge in Bloom’s taxonomy because tests rarely get past measuring facts. Even if students learn enough facts to pass the end-of-year tests, they do not retain them for long because the facts have no context or depth, and within a month or two they are forgotten. Yet these students come into schools as kindergartners confident in their creativity. Somewhere along the line, as their attempts at innovation are stamped on repeatedly in the name of standardization, they unlearn how to be creative.

Another tragedy of this vicious cycle is that each step in the process is based on faulty assumptions and non-sequiturs. Having high standards and accountability does not mean we have to design more tests. There are other ways to evaluate schools, and higher test scores do not necessarily mean students are learning more and certainly not better. That we have mandatory tests doesn’t mean we have to cut funding for arts and humanities programs, yet that seems to commonly be the case. This is not an either-or proposition or a zero-sum-game, yet most school districts act as if it were. We can emphasize STEM fields and the arts. We can teach STEM through the arts. I have seen it done effectively. I know of a school near Salt Lake City that teaches science, math, and history through dance. Yes, dance, a program that is usually the first on the chopping block of school districts. The students demonstrated the germ theory of disease through a very effective dance routine. I can give numerous examples of teaching STEM through art from my own classroom, but that will be a future topic.

The worst assumption made by the proponents of standards is that the so-called “soft skills” of creative problem-solving, communication, collaboration, and critical thinking (the Four Cs) are somehow not important for STEM fields and careers. The Next Generation Science Standards actually de-emphasize creativity as a science and engineering practice. Yet all effective scientists or engineers I know of rely frequently upon their creativity and innovation to solve problems that crop up in their research. Creativity is a critical skill, yet our emphasis on standards is crushing it out of future scientists and engineers.

I am in a graduate program titled Innovation and Education Reform but I fear that reform is not enough. What it will take is a wholesale transformation of education, a systemic integration of creativity and innovation into education to meet the needs of the complex problems we face and to stay competitive as a nation. Every attempt we have made at raising standards has merely put more pressure on teachers and students and moved us further away from the model of schools that I have in mind. I would like to see creativity integrated into schools as a virtuous cycle, as shown in the diagram below:

If we teach creativity and innovation, it will lead to more scientists and engineers, more makers, builders, creators, and inventors and therefore to more inventions, more discoveries, more products, more businesses, and an improved economy. This will lead to happier citizens and a better society. The question, of course, is how to move from where we are to where we need to be.

This diagram is more complex but more profound, not because I am claiming any level of profundity, but because the ideas expressed here are rarely examined in this combination. Starting again at the top of the diagram, if we deliberately teach students to be more creative and innovative (how to do this will be the subject of my dissertation) then there are several avenues that should be pursued. The first is that science classes should teach the processes of inquiry and experimentation, or what we used to call the scientific method. Reducing science to a body of facts is to render it dry and meaningless when scientific discovery should be an invigorating and exciting process followed by all students. We cannot expect future scientists to make new discoveries if they do not learn the process of inquiry.

I believe that all schools should have well-supplied and supported makerspaces where students can learn to tinker, make, build, and invent (please refer to my previous blog post for more on this). Part of the makerspace’s purpose should be to teach entrepreneurship and the process of invention, the engineering design cycle, and manufacturing and marketing skills. For a good example of this, look at the Innovation Design program developed by International Baccalaureate. I had the opportunity to be trained and teach this program and it is rare even for IB schools to offer it; mine was one of only a few such programs in Utah at the time.

Teaching creativity should also involve project or problem-based learning (PBL), with a focus on solving problems through design and developing skills for team work, collaboration, and communication. Teaching creativity and innovation through inquiry, making, and PBL will lead to increased scientific exploration and discovery, to more inventions and better products, and to starting up new businesses that will improve our economy and standard of living.

Another area of teaching creativity and innovation that I believe does not get enough attention (and is worth a research project or two this semester) is to teach students how to express themselves through media design software and design thinking skills. Even if teaching these skills only leads to critical media literacy it will be worth the expense in computers and software, but if done right it can enhance students’ creativity through allowing them more avenues to express themselves, to find their voices, to communicate their ideas, and to design educational content that will teach others. I think that we have not done enough research on the importance of training students to be teachers. I follow the old saying (with my own modification): “Give a man a fish and you feed him for a day. Teach a man how to fish, and you feed him for a lifetime. Train him how to teach others how to fish, and you feed a village forever.”

Words to live by . . .

With more inventions and products, more educational content, and a higher standard of living we will have more resources available to improve education and other social programs. This will lead to happier citizens. As we teach others how to evaluate media claims and how to express themselves, we will build better informed citizens and allow voices to be heard who have been marginalized before. We have only to look at the misinformation out there concerning the effectiveness of wearing masks during this pandemic to see why scientific and media literacy are critically important social skills. Better informed citizens contributing their own voices will make better decisions both as consumers and as voters, which will lead to a stronger democracy and a better, more equitable society. This entire process will feed back on itself as a virtuous cycle; teaching creativity will lead to more creativity which will lead to a better society and increasing recognition of the importance of teaching creativity and innovation.

Given the complex challenges our society faces, we need to completely overhaul our educational system. I see this as the only way to fully integrate creativity and innovation, which must be done to solve our problems and keep our nation competitive. Now, hopefully, you see the rationale for why I am getting my doctorate and why my dissertation will be about how and why to teach creativity. I can see no other area where I can contribute more.

Read Full Post »

Mihaly Csikszentmihalyi, who proposes that creativity is a cognitive state of flow, where the challenges of a task are balanced with the skill level of the individual.

Any human characteristic must be complex, given the many differences between people including their opinions, experiences, and mental abilities. Creativity is one such concept; an idea that everyone understands but that no one can agree on. We know that it exists and is widely distributed, but we cannt agree on what it actually is. I have been crawling down this rabbit hole for my entire professional life and especially this last year as I have begun a doctoral program in Innovation and Education Reform at the University of Northern Colorado. In my last post, I tried to lay out all the concepts related to creativity and innovation in order to systematically explore them over the four years of my doctorate (and beyond). The first concept that needs tackling is to develop a working definition of creativity, then move on to a definition of innovation.

Personal Destinies by David L. Norton. Not the easiest book to read, it discusses a philosophy of eudaimonism, or the development of the individual’s full potential, something that resonates with me as an educator.

For my first semester EDF 670 course, I was required to complete a detailed doctorate-level literature review. I delved deeply into the research on creativity, going all the way back to a Creativity course I took in college back in 1982. The leading definition then was that creativity was a process for solving problems using a rational sequence of steps (more akin to the current definition of the engineering design process). In a political philosophy course during my masters degree program, I was required to read Personal Destinies: A Philosophy of Ethical Individualism by David L. Norton (1976, Princeton University Press). He used a Greek conception of creativity as an inner trait or drive (called the daimon) that must be expressed for an individual to become themself, the second great Socratic imperative. Everyone has individual talents or gifts that can be developed; these talents are commensurable, in that our society consists of many different people whose talents compliment each other. Further research has identified other definitions for creativity, such as a great deal of research I did on creativity as flow, a mental state where skills balance challenge as proposed by Mihaly Csikszentmihalyi.

While preparing for this blog post two weeks ago, I researched websites that attempted to define creativity, thinking that I might find some alternative explanations beyond what was in the literature. I came across a website from Dr. Donna Hardy at Cal State Northridge who taught a course in the Psychology of Creativity (Psych 344/444) from 1997 through 2010 and asked her students to provide their own definitions of creativity, which were posted on the site at: (http://www.csun.edu/~vcpsy00h/creativity/survey.htm).

I have downloaded these definitions and analyzed them to develop an expanded list of possible approaches to creativity, including those I had already identified from my literature review. This resulted in a list of nine possible definitions. With these in hand, I went back through the student survey and tallied which categories their definitions fit into. In some cases the choice was obvious, but in others the definitions fit into more than one category, so I gave them multiple tallies. It was an admittedly subjective process, and the definitions are not mutually exclusive and possibly not comprehensive. There could still be other definitions that I have not considered. There were some students who refused to define creativity or said it was undefinable, used a tautology to define it (such as “creativity is the act of being creative”), or said that it was different for every person. I created a category 0 for these non-definitions. Altogether 548 students wrote their own definitions, of which I recored 748 tallies.

The nine definitions I came up with are as follows:

Categories of creativity definitions:

0. Undefinable, or refused to define, or said that it has a different definition for each person

  1. An innate personality trait, skill, talent, drive, need, passion, daimon, muse, or genius. There exists a commensurability of talents where each person has a different set of gifts. It is a human characteristic that cannot be taught, but it can be enhanced, encouraged, or diminished.
  2. constellation of cognitive or mental skills that can be taught, practiced, and improved.
  3. A mode of thought or frame of mind that is autotelic (self-rewarding) including imagination, exploration, conceptualization, appreciation of beauty, spirituality, visualization, and flow (when there is a balance of skills and challenge).
  4. A process or series of steps that can be rationally and sequentially followed and which is informed by experience and intellect. The problem-solving process.
  5. A moment of insight, clarity, or inspiration – the “Ah hah!” moment. This usually follows a period of incubation.
  6. Ideation or fluency with generating many new and unique ideas through synthesis and the creation of greater complexity. Brainstorming; conceiving that which does not yet exist or making something from nothing.
  7. Thinking outside the box, open-mindedness, breaking boundaries, originality, divergent or unconventional thinking, mental challenge, and conceptual blockbusting. Seeing things in a new way.
  8. Persistence and resourcefulness in bringing a final useful, socially valuable, or aesthetically pleasing tangible product from conception to fruition; innovation.
  9. Self-expression, artistic expression, individuality; one’s personality or feelings and emotions made manifest which resonates with the emotions of others. An outlet for the soul; self-discovery, empowerment, fun, and play.

These definitions are a work in progress, and I will continue to tweak them until I am satisfied they are good enough to start doing some serious research with. I would like to do a survey through both of my blog sites and of teachers I know. There is still a lot of overlap between some of the categories. I think putting them all together, I am approaching a fairly comprehensive definition of such a complex human characteristic, but I haven’t quite arrived yet.

After tallying the categories, the results are shown in the table below:

Screen capture from a spreadsheet used to tally definitions of creativity.

The most commonly held definition of creativity by the college students in the Psych 344/444 class was that creativity is self-expression or artistry, an outlet for feelings, emotions, and personality. It is individuality, self-discovery, empowerment, fun, and play. 28.07% of the students wrote some variation on this definition. It may be too broad of a category and in need of subdividing; it is too tempting to use it as a “grab bag” for all definitions that don’t fit elsewhere. The next most common definition was that creativity is open-mindedness, thinking outside the box, unconventionality, and divergent thinking with 19.52%. The third most common definition was that creativity is the act of ideation or the development of new and unique ideas through brainstorming, synthesis, and greater complexity (complexification?) with 15.37%.

A pie chart of the percentages of each category of definitions of creativity used by students in the Psych 344 class at Cal State Northridge from 1997 to 2010.

Other definitions were not as common, with some showing only a low percentage of usage, the lowest being Definition 5, where creativity is the moment of insight, inspiration, or sudden clarity at 2.14%. Although this is the least common category, I included it because there are a number of well-documented cases in the literature of moments of insight following long incubation, such as the famous example of the discovery of the structure of benzene by August Kekule.

There was no demographic information provided other than the students’ names. Cal State Northridge is in an ethnically diverse part of northern San Fernando Valley, and the students’ names suggest that their classes are also ethnically diverse, as do the photographs provided of student projects. I do not know if the Northridge students have provided significantly different definitions than students at other universities would. I tallied the various semester classes in two groups; the first 12 semesters from 1997 through 2003 and the final 11 semesters from 2004 through 2010. For most of the categories the results are not significantly different, but there is a slight increase in defining creativity as self-expression and a decrease in defining it as an act of imagination. I have not tried to calculate standard deviations or do any sophisticated Chi-squared or other tests. The subjective nature of my categories is not scientific enough to warrant that kind of analysis. I simply wanted to develop definitions that could be used for further studies that will be more statistically valid. I am thinking ahead to my dissertation, which will center around the need for and practices of teaching creativity in science classrooms.

I will try to unpack the details of each definition and give some backup literature in my next post. Eventually, the core of what I am writing and speculating on here will find its way into Chapter 2 of my dissertation. I still have a long way to go, but this is a necessary first step. I hope you don’t mind my taking you along with me.

Read Full Post »

aai-video-frameIn my last post, I said goodbye to Walden School of Liberal Arts after teaching there for six eventful years. My original plan was to spend a year in Washington, D.C. as an Einstein Fellow, but despite making it to the final round, I was not chosen. My Plan B was to go back to school for a PhD, but even though I was accepted to the STEM Education program at the University of Kentucky, I deferred for at least a year so that I could earn up more money for the move. I interviewed at four schools and received two offers, and accepted the offer at American Academy of Innovation.

aai-charter-school-rendering-s

Illustration of American Academy of Innovation

It is a brand new charter school with a mission for project-based learning, stem education, and international partnerships. They started building it in January and the contractors were still putting in finishing touches as we met for the first time as a faculty on August 15, 2016. Our Director is Scott Jones, who has a great deal of experience directing and working in charter school environments. The teachers have been hired from all around, some from Texas, the East and West Coasts, and several from Utah, Idaho, and Alaska. It appears to be a highly creative group of teachers.

aai-innovation-orange

Innovation Orange: American Academy of Innovation on my first day there.

We took a tour of the building and saw what it will look like in the next two weeks – except for my science room. It hasn’t been finished, partly because of last minute changes to the water and gas lines, partly so that they can get my input. I have since designed the lab, with four student stations, a fume hood and teacher demo desk, and lots of cupboards for storage. As I am writing this (November 14, 2016), the contractors are building in the lab stations – hooray! – and I am teaching out of the library.

faculty-touring-school

Faculty of American Academy of Innovation touring the school; August 2016.

For our first two weeks we met as faculty to prepare and plan. We revised the school’s vision and mission statements. Here are the new ones:

The Vision of American Academy of Innovation is to empower the individual mind to improve the world.

Our mission statement:innovation-defl-a

The American Academy of Innovation combines academic fundamentals; career, technology, and 21st Century skills with international and community partnerships through project-based learning to ignite an innovative mindset within the individual and society.

I most like that our overall goals are to ignite an innovative mindset and to empower the individual to improve the world. I have attended many educator conference sessions on Problem-Based Learning (PBL), so I volunteered to share what I’ve learned with the rest of the faculty and to go through the eight characteristics of PBL, working through a potential large-scale problem as an example. I chose an expedition to Mars (which I’ve used as an example all summer at meetings for potential parents and students). Other teachers volunteered to share their expertise, so we trained each other. Scott also brought in some experts from other charter schools to talk about how we will implement special education and organizational culture. We took time to plan out what our first few days would be like as we started training our new students toward project/problem-based learning.

aai-lobby-august-2016

Lobby of American Academy of Innovation; August 2016. We still had much work to do putting together tables, chairs, desks, and filing cabinets.

In addition to holding daily meetings, we helped to put together chairs, desks, filing cabinets, and other furniture. Parents and students came in to help, and by the time the first two weeks were over, the school was shaping up and ready for occupancy.

first-day-of-school

AAI students meeting in our gym for introductions on the first day of school; August 31, 2016.

On August 29, we held our first day with students at the school. These first two days were to be an orientation to get the students excited about being here and help them get to know us and each other. Some had come from neighborhood schools and knew each other before, but some had come from charter schools or homeschooling. We met in our new gymnasium, and discovered immediately that the acoustics in there are terrible. It is basically a hollow concrete shell, so sound bounces all over the place and the small portable PA system wasn’t up to the job. After introducing the staff, we divided the students into groups and had them rotate through four sessions each day for the first two days.

marble-roll-1

Marble rolling group activity. Students use the pool noodles as channels to roll marbles from a starting line into a bucket. It takes teamwork and problem-solving skills.

My groups were about problem solving. Our first day I did the activity of using swimming noodles cut in half to roll marbles from a starting point into a bucket. As the noodles were short, they had to develop teamwork to move the marble along without dropping it. It was interesting to see leadership beginning to emerge from some of the students. Most of the small groups were eventually successful. It was a lot of fun.

marble-roll-2

Rolling marbles into a bucket as a group problem-solving activity.

Our second day, I ran an activity to make a simple paper helicopter based on Da Vinci’s helix machine. Students were asked to use inquiry to vary the shape of the basic helicopter and try different things. After experimenting and testing in a classroom, I had them drop the helicopters off our balcony in the main lobby and tried to photograph and videotape the results.

helicopter-drop

Testing our paper helicopters. What you get depends on what you’re testing.

Other groups toured the school, took polls for what our new mascot and school colors would be, and many other things. Overall I think we managed to convey a sense of excitement, innovation, and inquiry to the students.

making-marbled-paper

Making marbled paper. Oil paints are diluted with mineral spirits, then dropped into a metal pan with an inch of water in them. The oil/spirits mixture floats on top and can be lifted off by lying a piece of sketch paper on top.

On Wednesday, August 31 we held our first regular classes. We have four periods per day on an A-B schedule; each class is 90 minutes long. I’m used to 70 minutes, so I have to pace myself. Our school day starts at 8:30 and ends at 3:30 with 50-minute lunches, so it is a longer day than I’m used to. My schedule for A days is to teach 3D Modeling during first period to about 25 students (good numbers – I’ve been talking this up all summer). We didn’t have computers to work with at first, so I had to do preparatory things such as going through Drawing on the Right Side of the Brain activities and teaching orthographic and perspective drawing skills. Second period I have STEAM it Up, with only eight students (students didn’t quite understand what this class would be about, but that’s OK – a smaller group will be more mobile and experimental). My third period class is chemistry, again a challenge to begin with since I had an empty room and no sinks or lab stations. I started with six demonstrations using household chemicals and had them make observations. I had 12 students but this has grown to 16. My 4th period class is 8th Grade Science to about 20 students. I decided since the new SEEd standards are being implemented fully next year, we might as well implement them now at AAI. We created marbled paper on the first day.

astro-levels-activity

Astronomy activity to determine the correct order of levels of magnitude in the universe. It starts with multiverse at the top and ends at quarks at the bottom.

On B days (Tuesdays, Thursdays, and alternating Fridays) I have the following schedule: First period (B1) is astronomy to 7-8 grades. I began with my scale of the universe activity to arrange strips of paper in the right order from largest to smallest scale. This helps me see what they already know visually while providing a setting for the class. Second period is Innovation Design, basically my MYP Design class again for 7-8 grade students. We began with the bridge building activity that I modified from Wendi Lawrence’s spaghetti tower design challenge. Even with 90-minute classes, the student groups didn’t get as far as I would have liked, with only one truly successful group. I can see we have some work here, partly because the students don’t know each other and aren’t used to working together. My B3 class is 8th grade science again, and then I had a prep period B4.

the-big-sit-down

The big sit down: all our students lined up, then sat down using the student behind as a chair. I kind of worked . . .

Part way into September, one of our teachers, who is from China, found out he had a conflict with his Visa (he had not renewed it), and so was unable to work for the rest of the semester. We found substitute math teachers for his math classes, but no one to fill in for his two computer science classes. I volunteered to give up my prep on B4 to teach the computer science class. It has been a challenge teaching straight through every day without a prep period, especially trying to stay up on grades. Because of our lack of computers, we had to have the students pair up. He started with Scratch, so I was able to transition the students over to my own way of doing things without totally replacing his structure. I also want to implement using AppLab after Scratch, then move on to Python.

building-bridges

Bridge building design challenge for my Innovation Design class. They must span 12 inches and make a bridge strong enough for a Matchbox car to be pushed across. They are given 30 pieces of spaghetti, 10 small gumdrops, and one sheet of paper.

When you add to this that I now have a 45-minute one way commute it can be exhausting. Much of my after school time has been spent in weekly faculty meetings or designing my science lab or putting together the order for initial equipment, lab supplies, and chemicals. We purchased 27 Dell laptop computers, so I’ve also needed to spend time getting software installed including Daz3D Bryce, Stellarium, Gimp, Sculptris, Blender, and others as well as getting the 3D printer up and running. I come home and crash each evening. But slowly, day-by-day, we are making progress and the students are beginning to develop 21st Century skills for collaboration, communication, and creativity. It was a rocky start, but we are almost ready to implement the Big Project.

pouring-sidewalk

Our school was still under construction during the teacher planning weeks in August, but by the time students started we were ready. Except for my science lab, which was completed in November.

We identified four possible Big Projects as a faculty and had the students vote on which one they preferred. My descriptions were as neutral as possible because I didn’t want to be accused of influencing the vote. Except, of course, I may have sweetened the well by using an example of a Mars expedition during our summer meetings. The vote was to do a Mars expedition or Mars exploration theme for our project. I will report on this more in my http://Spacedoutclassroom.com blog.

science-room-august-2016

My science lab at the beginning of the school year. A white board and projector, but that’s about all. It looks much nicer now!

I’ve never worked so hard, and my health is probably suffering as a result. I’m not as young as I once was, and some days I truly feel it, but it has been an incredible ride so far. Over Winter Break I will be reporting on all that we have done in my classes on my two blog sites, so stay tuned.

right-side-of-brain

My 3D students on the first day of school. By this time we had chairs, but no tables or desks. So we handed out clipboards to each student. Here they are doing an drawing lesson where they turn a photograph upside down and draw what they see instead of drawing a face. They do a better job this way.

Read Full Post »