Feeds:
Posts
Comments

Archive for February, 2023

Frames from a project on stellar evolution created in Wick Editor, a linear animation/interactive software. Students can choose which type of software and which type of project (here a branching informational program) to demonstrate mastery of their chosen STEM concept.

The purpose of this post is to invite you, as a STEM classroom teacher or informal educator, to participate in my doctoral dissertation research study. I need teachers to look over the new website I’ve been putting together at https://science-creativity.com (everything on it is free – I made it with WordPress which is why it is a .com website) and provide feedback in the following ways:
A – How functional and usable is the website? Are there any problems or issues that need to be resolved?
B – Are there any features you would like to see that are not currently there, including blog post topics related to teaching creativity and innovation in STEM classrooms that you would like to learn about?
C – If you are planning to conduct a project-based learning activity in one or more of your classes before the end of June 2023, please consider having your students create a project using media design software as described on the website. They could choose one of the 40 or so projects described on the Projects page (where there are also excellent student examples). Have your students try out the videos linked on the Software Training page to learn any software they do not know and then use that software to create their own media content to present to each other.
D – If your students do try out the software training videos and create a STEM media project, then please share good examples with me and I will post them on this website. You could explain it as a competition – only the best projects will be selected and displayed. The winning students and their parents will need to sign consent forms if they want recognition by name.
E – I will ask you to fill out a survey on how well the project went with your students, to what extent they used the training videos, the level of their creativity, etc. Since I will be using your responses in my final dissertation, I will also ask you to sign a consent form. Both of these forms will be posted to the https://science-creativity.com website. If you decide to participate, I will send them to you.

Two frames from an Animaker resume, one of the types of projects described on my website. Instead of the usual static Powerpoint or Google slideshow, why not allow your students to do something with a bit more pizzazz, such as an animated slideshow or Prezi?

This is a lot to ask, especially so far into the school year. Any feedback you can give will be helpful, not only for my final dissertation but to improve this website as a teacher resource. It is entirely free and always will be, and is a work in progress. I will upload additional posts as it becomes an increasingly important focus of my work going forward. With this announcement, the site is officially in beta form. Let me know how it can become more useful for you and what features or topics you would like to see. Spread the word. I can be reached at: David Black, elementsunearthed@gmail.com or write a comment to this post.

In the meantime as I continue to build this site, I am proceeding with the revisions to my research proposal. I mentioned last post that I have focused in on a final three-part research question, which is the following:

To what extent can STEM teachers implement choice boards for using browser-based media design software to:
A – promote differentiation, access, and equity through Universal Design for Learning (UDL)?
B – establish the components of “Gold Standard” Project-Based Learning (PjBL)?
C – enhance student creativity and Social and Emotional Learning (SEL)?

I have to establish a need for this line of research, how it fills gaps in previous studies, and why my approach will sufficiently answer this question. These are the first three chapters of the final dissertation and what I am working to revise right now. I have written extensively on this website about why such research is needed, but it is finally time to move forward with the actual study. As described in my last post, I will be tasking my students with three major projects over this semester, culminating with the STEAM Showcase at the end of April and the Stanford Innovation Lab project in May. Each project involves using choice boards and media design software to demonstrate STEAM concept mastery.

A unit choice matrix for my biology students at New Haven School. Concepts with green bars are covered in class, and concepts that are open must be completed through student-created projects. The types of possible projects are listed horizontally.

The idea of choice boards is an extension of what I was doing with my classes at New Haven School. I built a choice matrix for each unit, listing the unit concepts vertically and the types of projects they could do horizontally, as shown here. On the back of the sheet I listed a series of questions for the unit; if students knew the answers, they would be well prepared for the unit test. It acted as their study guide. On the matrix, the horizontal colored lines represent projects or concepts we covered together in class through activities, videos, or lectures. The open topics were the ones the students would need to learn through creating their own projects. Since the school’s email system was tightly locked down (because it is a residential treatment center) and we only had Chromebook computers, I couldn’t use very many types of software – only those that didn’t require an email verification and were browser-based. I taught my students how to use Scratch, SculptGL, Tinkercad, and a few others. Because Canva requires email verification, we couldn’t use it, so any layout design had to be done by hand or I had to design it for them; our Ad Astra newsletters in astronomy were laid out on my computer using Adobe InDesign. I didn’t know about Photopea or Wick Editor at the time or I would have used them. Many of the examples I have of excellent student projects were therefore done by hand.

Scratch by MIT is an excellent method for students to demonstrate their mastery of STEM concepts by creating an interactive game or quiz, such as this test on types of rocks. It can be programmed to be self-scoring and choose random questions, as shown by my training videos on the website.

The unit matrix worked fairly well at showing students the types of projects they could do with the limited software available to them and included hand-drawn options. Now, with my dissertation, I am focusing on browser-based media design software through the lenses of universal design for learning (UDL), project-based learning (PjBL), social-emotional learning (SEL), and student creativity. With more software available to regular public or private school students, they need more extensive lists of choices with better descriptions. My dissertation committee chairperson, Dr. Farber, suggested choice boards as a possible answer. I have adapted my previous unit matrix idea to allow for three dimensions of choice: choice of a specific topic for a course concept, choice of type of software(s) to use, and choice of the type of project to create. The diagram shown here demonstrates these three dimensions for an upcoming biology project.

Altogether I have grouped different types of browser-based media design software into nine categories including image creation software (Photopea, Inkscape, Procreate); infographics/poster creation or desktop publishing software (Easel.ly, PicktoChart, Canva, and ThingLink); animated presentation software (Animaker, Powtoons, Prezi, or Voki); storyboard or comic strip software (MakeBeliefsComix or StoryBoardThat); 3D modeling and animation software, including augmented reality (SculptGL, Tinkercad, Mixamo, or Aero); sound editing or music creation software (Audacity, Soundation, or Vocaroo); video editing software (WeVideo, Canva, Adobe Express, or iMovie); interactive or linear 2D frame-based programming (Wick Editor); and stage-based programmable control of sprites or characters (Scratch). I also added choices for using mini-computers and robotics, plus multi-vector projects that combine several other choices.

For students up to the challenge, they can build 3D characters using SculptGL along with textures, import them to Adobe Mixamo (a free program online) to add rigging and animations, then program them to move around in an Augmented Reality (AR) scene in Adobe Aero. Here, my gray alien character is doing a dance routine in my doctor’s office.

There are many other types of browser-based or free software, including some for iPads that I am not familiar with (my students showed me one a few days ago for creating animation that I need to check out, but my iPad is too old to run it). The point of my dissertation is to combine student choice and voice (a necessary part of project-based learning) with media design software for student-created media content of STEM concepts. This is all meant to increase student engagement, access, equity, creativity, social-emotional learning, project quality, and content mastery.

The PDF at the bottom of this post describes each of these project types listed by software. It is not an exhaustive list, as there are many more ways to do things than I can possibly imagine and types of software that I am not even aware of despite a great deal of research. As I say frequently in the training videos, the possibilities are endless and entirely depend on the imagination of the students.

Students in a chemistry class can pick a favorite molecule (such as Tyrian purple) and create a 3D model in Tinkercad, then capture different angles to use in an illustration or poster inside Photopea or Canva. Or they could build a model of a space probe or a virus using Tinkercad or SculptGL.

Because some students will try to get away with doing the least amount of effort (which, of course, leads to the least amount of learning), it is necessary to build in structure and scaffolding with tight rubrics for what is expected. That is why I use peer critique and revision as an important component of this process. The students’ peers act as an audience for the projects, which must be presented as part of “gold standard” PjBL. Students provide feedback through a Google form on five aspects of project quality: Does the project show deep mastery of content? Does it demonstrate creativity? Is there evidence of high student effort and professionalism? Do they show competency with using the software? Are they able to effectively teach their topic/concept to their peers? Students use the forms to rate their peers using suggestions that are kind, specific, and useful (Berger, 2018) and if teams do not get the rating they desire, they are allowed to revise their project and re-present it to me for a better final score.

All of this is to explain to you how to implement these choices, projects, and videos in your own STEM classes. I am hoping to gather data by the end of the school year so that I can analyze the results and draw conclusions by the end of August and have my dissertation defense by October 2023. I hope that you can review the website and try out the projects and videos with your own students. Let me know if you would like to participate and I’ll have you sign the consent form (this is a requirement of my university’s IRB) and send you the assessment survey link, then you can report on how it goes, make suggestions, and send some student examples. If the students want recognition by name, they will need to sign consent forms along with their parents.

The benefits to your students is that they will learn the content of your class more thoroughly and deeply and learn valuable and marketable media design skills. It will be much more engaging and fun for them to create their own STEM media projects than it is to read a textbook and answer questions at the end of the chapter. Hopefully, they will be motivated by the project to learn the concepts on their own. They will be recognized for their creativity.

As a final project, students can prepare mini-lessons, presentations, activities, and handouts for a STEAM Showcase night at the end of the school year. Here, students are demonstrating how to make soap for their siblings and parents.

The benefits for you as a teacher will be to see alternatives for project-based learning, with flipped video instruction already provided so that you don’t have to build it all yourself. You choose the topics the student teams can choose from, provide them with examples and scaffolding for the content, and allow them to create something useful that you could show to future groups of students. You’ll also get to participate in advancing methods for teaching STEM courses. At the end, once the dissertation is successfully defended and edited, I will send you the final version which could be helpful to enhance your own teaching. While you are at it, try out the videos yourself and increase your own media design skills. I find them to be very useful as a teacher. One final benefit to you is the future possibility of grant money; I hope to extend this project beyond the dissertation and apply for grants with the NSF and others, which you would be the first in line to be part of. Those teachers who participate now will be the first I will consider for the grants. I wish that I could offer a stipend for your participation now, but that will come eventually.

Once again, the website is: https://science-creativity.com (remember that everything on the site is entirely free. You have my permission to use any idea or document posted there). I can be contacted at: elementsunearthed@gmail.com or by adding a comment to this post. I hope you choose to participate – it will be well worth the effort.

Thank you for reading this and for considering my invitation.

Here is the Choice Matrix PDF:

Read Full Post »

A synthesis model of student engagement incorporating the models of Bronfrenbrenner, Groccia, and Fisher et al.

Over the past year as my doctoral coursework has concluded, I have been working toward the dissertation research. Before I tell you more about where my research is heading, it is time for a progress report. Please read through this to the end, as I have a request to make of you that could be very beneficial for your students. I would like your help to try out my new website in your STEM classes.

In my last post I described taking my written and oral comprehensive exams. I would like to discuss one of my responses in further detail. In this essay, I looked at theories of student engagement and created a synthesis model that incorporates Bronfenbrenner’s Ecological Systems Theory (1986) with a three-fold engagement theory by Fisher, Frey, Quaglia, Smith, and Lande (2018) and Groccia’s (2018) model of social influences.

The synthesis model, shown here, places the classroom as a microcosm at the center of multiple spheres of influence, including the school, the community, the larger society, and across time. All of these spheres exert an inward influence on the classroom and affect how well students engage in classroom activities. For example, the exosystem of state requirements and standards determines what a teacher is supposed to focus on in a particular subject, thereby influencing what students are allowed to learn. Inside the classroom itself engagement is mediated by the three factors of the Fisher et al. model, which are the student, the teacher, and the content with engagement occurring at the intersection of all three. Groccia’s model was specifically for college students, represented by overlapping zones of influence such as other students, the community, the faculty, the research/subject, and so on. In high school, I found there are at least twelve factors that are usually seen as being outside of the classroom but which influence the classroom and a student’s ability to engage. These include family, friends, social media, jobs, after-school activities such as sports and clubs, identity and social justice needs, current events, politics, physical and mental health, other students, and so on. These are not just distractions for students; they can actively influence what happens and what is taught in a classroom.

My insight was that just as these spheres and factors influence the student’s ability to engage, at the same time, the students in a classroom, as part of these systems, have an ability (A right? An imperative?) to influence the larger society. The influence goes both ways. That high school students can change the world even as individuals can be seen by the examples of such students as Greta Thunberg, Malala Yousafzai, and William Kamkwamba. In educational theory, we call this social reconstructionism. At some point, once the doctorate is done, I intend to write a series of books that include these ideas and how high school classrooms and students must re-image themselves as agents of change in the world.

On crutches during March 2022. My knee is doing much better now after some extensive physical therapy.

It is now February 2023 and I finally have my research questions in place and approved by Dr. Matt Farber, my committee chairperson. I have a rough draft of the first three chapters, which are considered as the proposal, but with better research questions these sections need major revisions, which I am hoping to complete within the next two weeks (before the end of February). I will have only three months after that to get approval from the full committee and from the Institutional Review Board and to complete my primary research data collection. Then this summer will be dedicated entirely to analyzing results and drawing conclusions, which will become Chapters 4 and 5. My target for final submission is still the end of August this year with dissertation defense sometime in October. It will be tight. In the meantime I am looking for a permanent professorial job.

By the middle of last summer it was apparent that the proposal writing process was harder than I anticipated and required setting aside enough time each day for thinking and pondering about what I was reading in order to achieve any kind of insight. In fact, one of my major areas of research is into the process of gaining insight as one definition of creativity. Altogether, I have identified at least ten different definitions of creativity based on approaches in the literature, ranging from the ancient Greek concept of the daimon through to modern multi-factor, multi-level theories such as Kaufman and Beghetto’s 4-C model. I will write a post soon about those, once I have completed the Chapter 2 literature review revisions.

To give myself the time I needed while also providing a new platform through which to conduct part of my research, I left New Haven School in mid-July, attended the second year of the Teacher Innovator Institute at the National Air and Space Museum for two weeks, then found a part-time teaching position at a private school near my home. Because I need to keep the school’s identity private as part of the requirements for my dissertation, I will not provide its actual name here but will call it Westview School. I am mentoring the science teachers at the school to train them on project-based learning strategies, hands-on activities, and student-centered teaching pedagogies. The school has been moving into a high school program, building the grades upward and installing a new science lab, which I helped to design and which is almost complete, so I have ordered supplies, equipment, and chemicals.

A screen capture from one of the videos I edited this fall. I have now built a website with links to all the videos and to project descriptions and examples at: https://science-creativity.com.

Meanwhile I am writing and writing. But since part of my research is how STEM teachers can teach concepts through student-created digital media projects, part of what I have to investigate is how to best teach the media design software. We can’t assume that our students already know how to do video production or computer programming or 3D animation just because they are digital natives, and most STEM teachers have neither the time nor inclination to learn it themselves and develop lesson plans for teaching it, given all the standards they already have to meet. The alternative is to provide online training for students through flipped video instruction. That has been a major part of what I am working on over the last seven months. I used TII grant money to purchase a new cell phone with a better camara and equipment (lights, a good microphone with plosives filter, etc.) and took it with me (it all fits into a small suitcase, which was why I bought it) to TII to start recording the videos during the evenings.

I have continued to record and edit these videos on how to use browser-based free software for digital media creation. I provided a link to the overview video in my last post, but altogether I will have 16 videos completed this weekend. More importantly, I have created a new website at: https://science-creativity.com to provide links to all of the YouTube videos and to write blogs specifically on my dissertation topics. It is still a work in progress, but I did complete a major portion of it this week which was to create a kind of choice board with descriptions and examples of different types of projects that students can choose for each category of software. Through their digital media creations, students will demonstrate their mastery of STEM concepts, their creativity and quality, and their ability to teach other students. I will explain this website more next time; it has been and continues to be a major focus and needs to be up and running by the time my research proposal is approved. I hope that it can be a major resource for STEM teaching and student-centered learning.

Banner image for my new website. It shows a collage of student projects.

In-Class Projects: This second semester my focus is on three major student projects which will provide data for my dissertation. The first is their next in-class only project, and I am using different levels of choice and structure for the three classes to provide comparison and research data. The biology students will be creating an animation on one of three topics: DNA replication, DNA transcription and translation, and protein synthesis. They have three choices for software usage: do a stop-motion animation with video software to compile the images; use MIT Scratch to program a linear animation or game; or use Wick Editor, which is a linear animation program similar to an older version of Adobe Flash. I am finishing up the second Scratch video today and will get it posted to YouTube and my website tomorrow. Their third dimension of choice is the type of project they choose to do – it can be a linear animation, a branching information program, or a game or quiz. Altogether, since you cannot do a branching program or game using stop-motion animation (which has to be linear), there are 21 possible choices for each group. The entire project has fairly high structure and limited choice, which is needed for this group of students.

For the chemistry class, they are creating a project on chemical reactions. They have four topics: balancing reactions, the five different types of reactions, stoichiometry, and limiting reactants/percentage yield. They can choose any category of software and any type of project, giving them something like 160 possible choices, allowing high choice with moderate structure. At the end, they must have some type of media-enabled product they can use to teach the other students and demonstrate their mastery of chemical reactions. A PDF version of their choice board with short descriptions of each type of project is provided below.

For physics the students are finishing up classical mechanics with a complex machine project. Here the possible projects can be a Rube Goldberg device using all six types of simple machines, eight steps, and as many consecutive repetitions as possible (the record last year at New Haven was 25 times). Or they can choose to do a cardboard marble run with six types of machines and a method to get the marbles back to the top without touching them, looking for at least 25 cycles. Or they can create a perpetual motion machine that has to go through 25 rotations without any extra energy added. We are now in the design phase after I showed them great examples, such the Rube Goldberg device music video created by OK Go for their song “This Too Shall Pass” or Mark Rober’s squirrel mazes or the Wintergarten marble run music box machine. The students must show a 3D diagram of the device and create an animation of how the objects will work. I am encouraging them to use Wick Editor, Scratch, or Stop Motion but they are independent enough that they are probably going to use dedicated iPad animation and drawing software such as Procreate instead. Although I would like them to test my recent videos, I want this project to have moderate choice and low to moderate structure so I will not force it as much as I will for the biology class animations.

At the end of each of these in-class projects, the students will use the critique process I have trained them on last semester to evaluate each others’ projects. They will also complete a reflection assignment, which we haven’t done much of yet but is essential for project-based learning to be effective.

A 3D matrix showing the three dimensions of choice students have for their DNA animation project. They have three choices of topic, three choices of software, and three choices of project type. Since stop-motion animation must be linear, this means the biology students have a total of 21 possible choices.

STEAM Showcase projects: The next project will be the same for all classes: it is the STEAM Showcase, which I am resurrecting here at Westview School. They have already begun to choose topics and I have talked with our elementary and middle teachers to know what topics they will be teaching at the end of March. Student teams of 2-3 people are choosing a topic, writing a script/outline, creating a presentation, practicing an activity or demonstration, and designing a handout. This will require using several different types of online software. They will first present their projects to their peers in class at the start of March and receive feedback from them, then make revisions. At the end of March they will visit the K-8 classes and present their topics and receive feedback from the teachers. The purpose of this is to provide them with a real audience, plus if they can explain science concepts to kindergarteners, they really them them down. The bonus is that this will get the K-8 students excited and begin drumming up some positive PR.

On April 27 we will hold the final showcase. We will take over 4-5 rooms and run simultaneous sessions of 20 minutes each just as I have done before. We will video and photograph all of this and I will write about it here and compile a YouTube video. After that showcase night, students will complete a reflection assignment and survey to provide me with research data and to cement their learning.

To test Adobe Aero for Augmented Reality, I placed T-Rex and Godzilla in the common room at Westview School. The five steps of the Stanford Innovation Lab projects are on the poster behind them: Empathize, Define, Ideate, Prototype, and Test. Students are moving into the Define stage now.

Stanford Innovation Lab project: The final big project is happening in what we call the Stanford Innovation Lab class. All high school students take this class, which is for two hours each Friday. It is basically an engineering design class focused on human-centered design, based on classes taught at Stanford University. Teams of students are working with different organizations locally to identify problems, design prototypes, and propose solutions. Westview School is private and focuses on entrepreneurship and innovation (a good match for my dissertation) and this is all about learning through collaborative problem-solving. Each team’s situation is unique, but as they get further into the design phase (they are in the problem-finding and ideation phases now) they will need to use more design principles and software. They are working toward a final presentation day in May when all the participating businesses/groups will bring representatives and judge which team has the winning proposal, and the winning team members will receive cash prizes.

To provide structure (and an additional research source), I created a choice board/checklist of each step in the process with requirements that the teams complete so many (say five of eight) possible tasks for each step. Some of them are required, others they can choose, so that there is a good combination of structure and choice involved. As soon as we introduced this choice board last week, the teams started making measurable progress. I will videotape the final presentations and photograph the teams as they progress, collecting periodic surveys as data points for my dissertation.

All of these projects, put together, should be enough to gather both quantitative and qualitative data sufficient for my research requirements. It will be a mixed-methods study, and should provide some important insights in how to combine student-created digital media projects, choice boards, critique and revision, and STEM education.

There is a major weakness here, of course, which is that this is just one private school and it is highly unique, just as New Haven was, so whatever conclusions I draw from this research will not be very generalizable to a larger population of public schools. This is another reason for the website: to create a resource for other teachers, then recruit them to try it out in their own classes, fill out surveys, and add to the data of how well this program will work in other schools and without my direct instruction/involvement. I call this Phase 3 of the larger project, which will ultimately go beyond my doctoral dissertation and become part of what I do as an Ed.D. and what my future books and papers will discuss. I will be presenting at two different conferences in March on the subject of my dissertation and hope to recruit some teachers there. I will send out emails to the TII teachers to ask for volunteers, and I will scour all the contacts and teachers I know in Utah to help out. I hope for 8-10 teachers to participate, but even more would be great.

If you are a STEM teacher interested in project-based learning and teaching creativity in your classroom, you would be an ideal person to help out. I know this because you are still reading this post! What this would entail is looking over the https://science-creativity.com website, including the training videos and project ideas, then setting up a similar project to the ones I have described above. Give your students three dimensions of choice: Choice of specific topic, choice of software, and choice of approach or project types. Use the choice document I posted above, and have your students look through the website – it may need to be unblocked – and make their choice of software and project, then plan it out. I am also posting a PDF of my biology DNA animation project presentation and my chemistry reactions project here so you can see the level of structure and requirements for each. Then provide your students with the scaffolding, structure, and support they need while allowing them the freedom to choose and to create. At the end, I will provide a survey for you to complete as the teacher and a consent form and ask that you share some of your students’ projects with me.

I realize this is quite a bit to ask so late in the school year, but if you are planning a project-based learning experience anyway this could be a great way to increase student engagement, content mastery, creativity, quality, and choice. I hope that you will try this out, or at least provide some feedback on how to make the new site more useful.

Thank you for reading this. I hope to hear from you! My contact information is: David Black, elementsunearthed@gmail.com.

Here is the PDF file with project descriptions organized by software category. Altogether it has about 40 different types of projects, and combined with choices of topics, the permutations can be in the hundreds, providing students with a high level of choice within structure. It isn’t an exhaustive list, students can certainly think of other ways to use media design software to demonstrate their mastery of STEM concepts. For those students who have difficulty coming up with project ideas, this should help.

Read Full Post »