Posts Tagged ‘NASA Explorer Schools’

I haven’t posted anything in several weeks because I’ve been very busy preparing entries for two major teacher contests, neither of which are related specifically to this blog. The first contest is for Curriculum Support Materials for the Explore Mars program, with teachers creating lessons and other materials about Mars exploration that can be incorporated into other classes and curricula, such as Earth science or astronomy or geology. I had been meaning to update and improve some lessons I’d put together several years ago for the NASA Explorer Schools program workshops I helped plan at the Jet Propulsion Laboratory.

Alluvial Fan-Notch Peak

Alluvial fans at Notch Peak, Utah

North Rim of Holden Crater

North Rim of Holden Crater on Mars

These lessons included a Site Selection activity, where teams of students use Mars maps to find suitable landing sites for Mars rovers (such as the upcoming Mars Science Lab [Curiosity] rover).

The second lesson was a new one, using Google Earth to compare and contrast landforms on Earth and Mars, such as alluvial fans in Holden Crater with alluvial fans west of Notch Peak in the House Range in western Utah. I located terrains in the Great Basin and used them as analogs for Martian terrains, with exact longitude and latitude, that could be looked up and viewed in 3D on Google Earth. I’m going to try this out in my geology class tomorrow. Here’s a .PDF of it.

(Teacher instructions): Mars_on_Earth-teacher

(Student version): Mars_on_Earth_Student

Monument Valley

Monument Valley, Arizona

Deuteronilus Mensae

Deuteronilus Mensae on Mars

The third lesson is an update of one I’ve used in my 3D classes and astronomy classes: to take a mystery box terrain and use a grid of holes in the box’s lid and a lollipop stick with measurements on the side to calculate the altitude of the hidden terrain at each grid location. This is an old activity, but my spin on it was to have the students take the data, type it into a word processing program as a .txt file, then use ImageJ software from NIH to translate the numbers into a grayscale image, which was cleaned up in GIMP and translated into a 3D model in Daz3D Bryce. It sounds complex, but converting data between various multimedia software packages is something I do all the time. In fact, this process can be used to visualize many types of scientific data sets in 3D. Here’s a .PDF of the activity  (teacher version): Mars_to_Model

I started uploading this lesson two minutes before the deadline (10:00 p.m. my time, Jan. 31) along with a Powerpoint (PDF version included here: Mars_Lessons_Overview ). But my e-mail suddenly bogged down (the Powerpoint was too large) and I finally had to submit the files in two e-mails. But then I got a bounceback saying the Explore Mars e-mail was full. After a few minutes of panic, I sent the files via an alternate route as an attachment to the e-mail address of the President of the organization, whom I had communicated with a few times before.

The next contest was the Apple Distinguished Educator program, and in addition to a long written application I needed a two-minute video showing how great I am at using Apple products. I’d spent weeks working on it, but the deadline was at 1:00 a.m. Feb. 1 (just three hours after the Explore Mars deadline) and by 12:30 I only had the final edit of the video done half way. So I never submitted the application. And I think I had a good chance. It’s just too hard to try to do two major contests at the same time. So I’ll have to wait another year and submit my application then, with any changes. I’ll keep chipping away at the video over the next two weeks and get it ready for next year, then all I’ll need to do is make a few changes and send it off. One good thing to come out of all the work was that I dug into my computer files and discs and found some things I thought were lost, including a working Mac version of the “Unveiling the Red Planet” interface my students designed back in 2004 as part of the Mars Exploration Student Data Team program they were chosen for. Much of the work for that project was lost because a hard drive I had saved the files onto was stolen out of my classroom. But I had apparently saved a few things elsewhere, which I was able to find. Here’s what the interface looked like:

Mars project interface

Mars project interface, 2004

This is always my greatest fear: that there will be a wonderful opportunity that I will either fail to find out about until it’s over, or I won’t be able to get the application done on time. But I’m also patient. For many of the best things I’ve had the chance to do, such as the NASA Educator Workshop program or being a NASA Explorer Schools educator facilitator, I had to apply multiple times over the course of several years. I kept trying, and each year as I applied I got better at it until these opportunities finally came true. I really wasn’t looking forward to spending a week in Phoenix in July for the training, anyway (yes, I know that’s “sour grapes” rationalization on my part).

But now back to the world of the chemical elements. I’ll have a new post soon. I received word two days ago that we’ve been selected by the Air Force Foundation to receive a $250 grant for use in our Elementary Science Demonstration program. This will certainly help to defray costs. Thank you, Air Force!

Read Full Post »

It’s now 11:05 a.m. on Saturday, March 20 and my presentation at the NSTA Conference in Philadelphia is done. Whew! But more on that later. This post will seem to be off on a strange tangent at first, but I will tie it into science education in the end.

The Shadow Line

The Shadow Line

While riding on the Philadelphia public transportation system last summer (SEPTA) I usually took the 101 surface light rail route to the 69th St. Terminal, then the Market-Frankfurt line to the 5th St. stop in the historic district of Philly. I noticed something then that puzzled me – the main line would always bypass certain stops, such as the stations at 22nd and 19th Streets. I could see there were stations there, and people waiting, and occasionally a trolley car, but there seemed to be no connection to the main line – a complete system that I only got glimpses of. The last few days, I’ve been staying out in Darby and taking the Route 11 trolley/subway to the Juniper Station under City Hall, then walking to the Convention Center. Now I know what that other system was – a completely different sub-subway, a kind of Shadow Line, that runs parallel to the main subway trains for part of its length. It only connects in certain places, such as Juniper Station, which is under the main 13th street station, at 30th St. for University City, etc. Now I am now one of those people I glimpsed last summer, riding the Shadow Line.

Juniper Station

Juniper Station

It occurred to me last night, riding back to the friend’s house where I am staying, that education is like the Philly transportation system. We as teachers are riding the main line train – zooming in and out with our (supposedly) greater knowledge and experience and thinking we know how our students think and where they live, yet we are really only getting glimpses of them in the few places we can actually connect. It is this disconnect that causes most of our problems as teachers (and as a society); we have far too many places where we don’t understand each other, don’t connect, can’t relate, and don’t communicate. Racial strife, the disparity between rich and poor, the digital divide, the generation gap, etc. are all created by the disconnects between individuals and between groups.


Connections Between Stations

Education is all about building bridges across these gaps, making the connections between their world and ours. If teachers and other adults are on the Main Line, then our students are on the Shadow Line and our classrooms are the stations. Our job as educators is to connect the lines (lives) of our students with our lines (lives) as adults through our classroom stations.

I tend to think of technology as an end-all and be-all of teaching (I”m a techie, after all) but I need to remember that technology is only there to build these bridges and make connections, to give us glimpses into the worlds of our students and their ways of thinking, and as such is no more valuable than any other teaching method or technique. The fundamental thing is learning how to build a community of trust and mutual support and respect in a classroom where students can freely express themselves and learn from each other. Technology can certainly help to do this, but it is only part of a well-constructed and well-taught class. Some of the sessions yesterday reminded me of this fact (especially one by Joan Gallagher-Bolos who teaches an extraordinary chemistry class in Illinois, where students learn to trust and support each other, to speak their minds and make a contribution, as well as learning chemistry). I can only hope The Elements Unearthed project will help build communities of students, in local towns, and across borders. If not so, then just making gee-whiz videos for the Internet is rather pointless.

Yesterday was very much about making connections. I attended sessions taught by, or ran into, many friends and associates from my days in two NASA educational programs, the NASA Explorer Schools program, in which I was a facilitator at JPL for three summers, and teachers in the Solar System Educator Program. It’s been over five years since I’ve seen them, but seeing them again has helped re-ignite my passion as a science teacher and reminded me of the communities of teachers I’ve been part of, renewing the connections I’ve had with these amazing educators. A group of us got together for dinner last night and it was as if I had never left the program; they welcomed me back even if only as a visitor. I am still part of their community, just like I will always be from Deseret, Utah even though I haven’t lived there since 1983. I also spent time meeting and building new connections, finding new ways to collaborate, and new ways to build bridges.

Ota Lutz

Ota Lutz of JPL

I”ll post more later today on my presentation. Now I’m going to brave the Exhibitor’s Hall. More connections to make . . .

Read Full Post »

If you have read the previous post you might be wondering what an Applied Technology College is doing creating a science history project. This post is to describe who we are and why we’re doing this.

MATC logo

MATC logo

 MATC Programs:

   Mountainland Applied Technology College (MATC) is one of nine regional campuses of the Utah College of Applied Technology (UCAT) and is part of the state’s post-secondary education system. Our mandate is to provide vocational, non-credit certificate programs such as Medical Assisting, Business, IT, Dental Assisting, and Cosmetology. The Media Design Technology program is set up to provide hands-on, project-based training to both high school and adult students in graphic design with Adobe Photoshop, Illustrator, InDesign, Dreamweaver, Flash, Premiere, and Director; 3D modeling and animation with Daz 3D Bryce and Carrara and Autodesk Maya; video production with Apple Final Cut Studio; and more. Students join the class in an open-entry, open-exit format and finish the program with the software, design, and project management skills they need to secure a job in media design.

Mountainland Applied Technology College

Mountainland Applied Technology College


MATC Students:

   In order to train them in project management and leadership, we have the students do at least one large-scale group project where they must follow the entire multimedia development process of idea formation, planning, design, content creation, editing, testing, and deploying their project. In the past groups have worked on many types of projects. In 2003-2004, MATC students were chosen by NASA’s Jet Propulsion Laboratory to be part of the Mars Exploration Student Data Team project (MESDT) 


Students learned how to use the NASA Unix server to download up-to-date data on Mars’ weather conditions from the Mars Global Surveyor probe, then analyze that data to predict upcoming dust storms and cold fronts. Our students were the only group that was not a science class; instead of merely reporting on the weather, their task was to take the data and turn it into media that could be displayed and presented visually, such as how a December 2003 dust storm bloomed and spread over the surface. They downloaded accurate 3D altitude data of Mars and turned it into 3D animations of the rover landing sites.

Gusev Crater on Mars

Gusev Crater on Mars

Several students attended a final project symposium at Arizona State University to present their graphics and animations. This experience taught us the essential role of media designers in presenting scientific data and their place in the citizen science movement. As their instructor, I had the privilege of attending the 35th Annual Lunar and Planetary Sciences conference in Houston, Texas in 2004 to present how to get actual NASA data into the hands of students and what to have them do with it. 

AM to FM project:

   In the 2004-2005 school year we began work on a new project: to document and preserve the history of AM radio stations and disc jockeys in Utah during the 1960s and 1970s. We were approached by a local television producer to help film and edit a two-hour documentary to be aired on Utah’s main PBS station, KUED in Salt Lake City. We planned and researched the history of radio, then put together a radio reunion dinner in November, 2004 and invited all the former and current DJs we could find. 16 DJs attended as well as many local community members. We divided the DJs into groups by which stations they worked at and took them into side rooms with lights and cameras and interviewed them in the form of panel discussions. Then over the next two years we transcribed, captured, wrote scripts, edited, and tested the video until it was of sufficient quality to be broadcast by PBS. The final video, titled “AM to FM: Three Decades of Radio in Utah” aired on KUED twice in January, 2007 and again in July, complete with closed captioning. We also mastered the video into DVD format and sold enough copies to pay for much of the project costs.

AM to FM video segments

AM to FM video segments

   The program had excellent reviews, and we were able to collaborate with audio and video students at Utah Valley University and with professionals. MATC students worked on all stages of the project, from pre-production to filming to editing to marketing and gained invaluable professional experience along the way.

   Best of all, we preserved a slice of Utah’s history by digitizing old station air checks and jingles and scanning hundreds of music surveys and other documents. Our interviews of the DJs were marvelous, and one of them has already passed away since his interview. We have preserved a unique story that would have been lost forever. This experience has also given us the necessary expertise to lead an even more ambitious project: The Elements Unearthed.

AM to FM advertisement

AM to FM advertisement

 Qualifications of David V. Black: Early Teaching Career

   As the lead instructor for the Media Design program at MATC, I have 20 years of teaching experience at the high school and college levels. I began my teaching career with a teaching degree at San Jose State University in California in 1990 and began teaching that fall at a small start-up high school in the Sierra Nevada foothills called Tioga High School in Groveland, only 30 miles west of Yosemite National Park. We had only 40 students that first year, and I taught six different subjects including computer applications, world history, biology, and art. While there I developed courses in chemistry, Earth science, photography, and other subjects. I first learned how students can be motivated to learn a subject if they create their own content through a project my chemistry students completed on organic molecules using Hypercard, one of the first multimedia authoring programs. They were to put together a hypercard stack that would teach the other students about their assigned organic groups (such as esters or alkanes) using images, text, interactivity, and to even include a quiz or game at the end to test the audience’s knowledge. Students started asking to come in at lunch to the computer lab so they could work on the project – a level of motivation I had never seen before. Since then I have involved my students in activities that allow them to use inquiry in the classroom and share what they have learned with others.

Juab High School students

Juab High School students

   My second teaching position was at Juab High School in Nephi, Utah where I taught chemistry, physics, photography, earth science, and math classes. Chemistry and physics students researched the chemical elements, developed hypercard stacks to teach others of them, then developed demonstrations and short lesson plans to present to their classmates, who critiqued their teaching. They then had to revise their lessons and present them to their parents and the public at an annual back-to-school science night. The advanced Chemistry II and physics students took their lessons on the road once per month and presented them to classes at Nephi and Mona Elementary Schools. They would take the Van de Graaf generator and teach about static electricity, or electromagnets and teach concepts of magnetism. All their lessons were coordinated with the teachers at the schools to fit into their curricula at the appropriate time and level during the year. These programs were very well received by the elementary students, by the public, and by my students. Their general level of knowledge and enthusiasm were much higher than if they had merely learned by rote or even by lock-step labs.

NASA Educational Programs:

   I have also had the privilege of working with NASA as part of the NASA Educators Workshop (NEW) program in 1998. I was selected to attend a two-week all-expenses-paid workshop at the Jet Propulsion Laboratory in Pasadena, where I met project sciences, education and public outreach coordinators, and practiced NASA lesson materials which I brought back to my classroom. Wanting to stay involved in NASA educational programs, I applied to be a NASA/JPL Solar System Educator in 2000 and received additional training each year at JPL from project scientists and education specialists, then took back what I had learned and trained over 100 other teachers each year, for a total of about 500 teachers over four years of participation.

David Black in clean suit

David Black in clean suit


   In 2001 I was invited to a launch conference for educators at Cape Canaveral in Florida for the launch of the Mars 2001 Odyssey space probe. In 2002 I was selected to be the Educator Facilitator for the summer workshop (now called the NASA Explorer Schools program).


I helped with participant transportation, housing, meals, event planning, tours, and presenting lesson plans. I organized tours to Dryden Research Center at Edwards Air Force Base, to the Deep Space Network complex at Goldstone in Fort Irwin, to the Mt. Wilson Observatory, and to Caltech for the 25 participants who were from around the country. The following two years I continued as Educator Facilitator, planning and leading three more workshops for JPL. Through these experiences I have gained expertise in inquiry-based learning and student-created content.

Mars topographic activity

Mars topographic activity

   Recently, I have published an article in the November, 2008 edition of SchoolArts Magazine entitled “Virtual Self-Expression” about how students at MATC are using 3D modeling to create artistic scenes. I try to blend many subject areas (art, architecture, history, physics, chemistry, geography, math, etc.) in with my multimedia courses, as I am a firm believer that courses and subjects should be integrated if we are ever to engage our students and prepare them for life.

Fellowship at the Chemical Heritage Foundation; Philadelphia, PA.

   This expertise will be used to good advantage for The Elements Unearthed. My passion for the physical sciences, for history, and my skills in media design will come together to build a worthy program that will involve students and the public from around the country, starting here in Utah. As part of the planning and background research for this project, I have been named as the Societe de Chimie Industrielle (American Section) Fellow at the Chemical Heritage Foundation in Philadelphia for 2008-09.


   As part of my fellowship, I will be in residence at CHF conducting research on the history of chemistry and the elements through the Greek and Medieval periods as well as creating accurate 3D models of laboratory equipment and re-creating the labs of alchemists and chemists to produce animations for the video podcasts. Ultimately this research will form the basis for the first segment of a six part mini-series that will compile the footage and interviews we create for the podcast episodes to tell the complete story of how the elements were unearthed and how we use them today.

Why do a project about the elements?

   The Elements Unearthed is the culmination of over 15 years of planning. As a teacher of chemistry, I have often wanted a comprehensive, in-depth source of information about where the elements come from, how they are mined, refined, etc. Next week we will go into more detail about the need and the audience for this project, but suffice it to say that the need is deep and critical; my students and I are in a unique position of knowledge and expertise to fulfill that need. Simply put, we will do this project because no one else can and because it is desperately needed. All of our past projects have prepared us to be in the right place and time with the right technology, knowledge, and skills to build an excellent program and to provide leadership and direction to the collaborating teams. All that remains now is to gain your support as participants or as funding agencies and a lot of hard work to make this plan a reality. This is not a pipe dream. We know how much work this will take, but it will be a worthwhile journey getting there and the benefits will be incalculable. 

Read Full Post »