Posts Tagged ‘student created content’

   “Citizen Science” is a movement that is growing around the world. It can be defined as the participation of non-professionals (including students, teachers, and individuals from the general public) who aid in data collection and analysis for scientific experiments. Although usually done under the supervision of a professional scientist, increasingly these amateur scientists even design the experiments and publish the results. There are several excellent examples. I had the privilege, as part of my participation in the NASA Explorer Schools program, to observe students at a middle school in urban Washington D.C. collecting data of loggerhead turtle movements in the Atlantic Ocean (from radio collar frequencies) and correlating that data with plankton abundance and ocean temperature gathered from an orbiting satellite. This program is called Signals of Spring. Other students track migratory waterfowl. I have had the opportunity to see the Telescopes In Education program in operation, where students at schools around the country use software to calculate the ephemeris of star locations on a given night and time, then communicate to a docent at the Mt. Wilson Observatory in California who slews a 24 inch reflecting telescope to view the location specified, then takes photos of that spot using the exposure times and filters the students specify and uploads them to the students’ computers. A 14 inch scope at the site is fully automated, and was being paired with a scope in Australia to view the southern skies. Using this system, students have access to the same data collection and stellar photography techniques of professional astronomers.


   My own students participated in the Mars Exploration Student Data Team program in 2003-04 (described in my second post) to collect and analyze raw data acquired by the Mars Global Surveyor and Mars Odyssey space probes in support of the rover missions. They looked for atmospheric patterns (temperature, dust abundance, etc.) to predict possible dust storms or other meteorological events that could have disrupted the rovers. They then used their media design skills to create graphical representations and animations of this data, as shown in the image. Four of my students also participated in the Mars Student Imaging Program at Arizona State University, where they were allowed to select a spot to photograph on the surface of Mars using the Mars Odyssey spacecraft’s THEMIS camera. They then analyzed the image for signs of water or geological activity. My students also download and animate 3D altitude data acquired by the Mars Orbiting Laser Altimeter on the Mars Global Surveyor spacecraft.


   Putting authentic data in the hands of students and the public allows for engagement and excitement in the scientific enterprise. Students and other amateur scientists see themselves as participants and stakeholders, and become scientifically literate. This is one of the major purposes of The Elements Unearthed project.


   Although they will not be collecting new data in the form of a scientific experiment, our collaborating teams will be collecting new historical facts and developing their own interpretations. As citizen historians, they will add to society’s knowledge of the history and processes of mining and chemical production and make this information available to the general public. They will join the ranks of amateur citizen scientists that participate in professional-level data collection and analysis.


Division of sciences by category

Division of sciences by category

   Ultimately, the major problem is the divide in our society between those who do science and understand it and those who merely use the technologies it produces without understanding. We are becoming a technocracy; a population ruled by the few people who design, control, and maintain the technology we rely on. Numbers from the U. S. Bureau of Labor Statistics, May 2007 National Occupational Employment and Wage Estimates show a total of 1,255,670 physical, life, and social scientists (not including technicians) in the United States and 1,480,050 engineers. Of these scientists, 18.7% are life scientists, 20.4% are physical scientists, and 60.9% are social scientists. Altogether, scientists and engineers make up about .85% of the total U. S. population, or less than one percent. In other words, of 100 elementary students in school, only one of them on average will go on to a career as a scientist or engineer.


Scientists and Engineers compared to total population

Scientists and Engineers compared to total population

   Currently, this less than one percent of the population is the only segment actively engaged in creating science or technology; they are solely responsible for discovering the majority of the new knowledge and technologies our country relies upon. If we were to map out the relationship between the amount of fundamental new science created on a vertical axis and the percentage of the population involved in this creation horizontally, we get another steeply-sloped Pareto curve. For a discovery or technology to be considered “acceptable” professionally, it must be published in a reputable, peer-reviewed journal such as Nature. Usually only professional scientists with PhDs and years of advanced training in experimental design and statistical analysis can have any hope of being published.


Most science is created by professionals

Most science is created by professionals

   Yet beyond the narrow band of professional scientists and engineers lies a long tail of semi-professionals or generalists, including college science and engineering professors who are part-time researchers and high school science teachers, as well as amateur or “apprentice” scientists such as college and secondary science students and the “citizen scientists” in the general public. All of these people could potentially be creators of acceptable new science and technology if they were sufficiently trained and the rules were changed a bit. In the chart shown, the total amount of science produced can be represented by the area under the curve. What would happen, though, if we found a way to move the level of acceptability to the right to include science conducted by part-time researchers, generalists, teachers, students, and even “citizen scientists” in the general populace? We would dramatically increase the total amount of science done, and enlarge the depth and breadth of the research conducted. We would also engage a larger segment of the population.


Potential amount of science that could be produced

Potential amount of science that could be produced

    This would have secondary effects. As teachers, students, and the public get a taste of doing authentic, valid science, and become more experienced in data collection and analysis, they will tend to move to the left on the scale, becoming more professional. More students will become excited about careers in science, thereby increasing the number of science and engineering graduates and increasing the total output of science produced which will broaden the curve. As more of the general public gets involved, more people will hear about the possibility, get excited about it, and become involved and the border of participating population will potentially increase. Therefore, small effects in boosting the amount of “amateurs” doing science will have huge benefits in the total amount of science produced.


   Of course, there are many issues to resolve about how to train the amateurs and semi-professionals to do accurate, valid, repeatable science and to broaden the access of these studies to peer-reviewed publication. Podcasting, as in our Elements Unearthed project, can reach a broad audience but to gain professional respect such grass-roots research must be evaluated and mentored by reputable scientists and given the same scrutiny as any peer-reviewed study.


   If may seem daunting to attempt to increase participation in authentic science across the country. Surely our project can’t do this all by itself, but it can make a start and add to efforts already out there. If all we can do through this and other projects is to simply encourage one more student to pursue a career in science and technology out of every 100, we will double the amount of science and engineering done. This should not be too difficult a task. If we can involve the general public in data collection and make them scientists in that they learn to ask questions and observe nature to find answers, we will fulfill a fundamental human need to understand the world. This may very well be the most humanizing activity we can possibly do, and the most beneficially in the long run for humanity. A scientifically literate populace would make better decisions regarding resource allocation issues. Certainly it is a cause worth investing money and effort into.


   Through The Elements Unearthed project, we hope to engage students and communities. We will involve local scientists, engineers, and historians as subject matter experts; train teams of students and community members to become amateur science historians and video content producers; and generally increase the excitement of students to enter careers in science, technology, engineering, and mathematics. Through this we will contribute to preserving the history of chemistry, producing a scientifically literate public, increasing U. S. competitiveness, and helping individuals understand the properties and hazards of the materials they use.

Read Full Post »

   Last week I wrote about the need for and purposes of our project. This week let’s discuss our approach of training community teams to create the content of this project and why this will be beneficial. 


   One purpose of The Elements Unearthed project is to train teams consisting of students and community members how to document the history and chemical processes of mines, refineries, and plants in their neighborhoods. Through on-site visits and on-line training resources, they will learn how to set up and use cameras, lights, and microphones; how to write preliminary and final scripts and storyboards; and how to film interviews and site visits, then edit the footage into a series of podcast episodes for use on the iTunes Store, YouTube, this blog, and elsewhere. They will also use desktop publishing software to write well-designed PDF files that can be downloaded and printed. Not only will our audience (primarily high school and college chemistry students) benefit by viewing and using the video, audio, and PDF files the teams create, but the team members will also benefit. They become experts in their subjects; as they learn the science and engineering well enough to pass it on to others through self-created, engaging content, they become the scientists, teachers, and historians themselves as well as learning valuable digital media skills.


Team Composition and Informal Science Education:


   This project has aspects of both formal and informal science education; although we expect most of our teams to be centered around high school science classes where a mentoring teacher provides the impetus for the project, we want this to be much more than just another class assignment. In order to help the teams reach beyond what is easily knowable at their schools, and to ensure depth and accuracy, we will require that each team include someone from their community who is an expert at their chosen subject. This person could be a scientist or engineer at a local mine or refinery, an historian or museum docent with historical knowledge about the community, a local artisan who understands and uses materials in a workshop setting, or a citizen scientist who has gained experience with a local environmental concern. These community members will be referred to as Subject Matter Experts.


   Altogether an ideal team would consist of about four or five students from a local high school or community college, hopefully with a good mixture of course experience (history, art, multimedia, science, etc.). These students will have specific assignments, such as one student being responsible for writing the script, another planning the video shoot, another capturing and transcribing the footage, another creating B-roll images and animations, etc. All of them will be cross-trained in each other’s areas of specialty as well, but each area needs to have someone in charge. In addition, these students will be mentored by an instructor who will act as the primary point of contact. Finally, at least one Subject Matter Expert must be actively involved in reviewing the script and final video and helping with tours and interviews. Since most of the training, coordinating, planning, filming, and editing will be done outside of school hours and will involve more than just formal teachers and students, and since our podcasts will be available outside regular school curricula to anyone at any time, we feel this project qualifies well under the heading of Informal Science Education.


Student-Created Content:


   Having students build meaning by creating content for themselves and others has excellent benefits for knowledge retention and integration. The students who create these videos will learn a great deal about their topics in a manner that will be unforgettable. Students will take ownership in what they learn and have pride in accomplishment by creating professional-quality videos that are also factually accurate. They and their mentor teachers will develop the knowledge base and equipment and software skills needed to pass on what they learn to more students who can document other subjects in their communities. To take the old saying one step further:


Give a man a fish and you feed him for a day; teach him how to fish and you feed him for a lifetime; train him how to teach others how to fish and you feed a village forever.


Or, as one of our students pointed out somewhat tongue in cheek:


Build a man a fire and you keep him warm for an hour; catch a man on fire and you keep him warm for the rest of his life; catch a village on fire and you won’t have to worry about keeping anyone warm . . .


By turning students into experts and having them teach others, they learn the skills of data collection, interpretation, analysis, and synthesis. They learn how to be historians using direct first-person interviews. They become informed producers instead of consumers of content, actively instead of passively engaged in learning. We don’t just hand them a fish or build them a fire, we turn into the instruments to feed and light up an entire community.


Science Education Content Creation now

Science Education Content Creation now

Science Education Content Creation:


   If we were to chart the amount of science education content produced on a vertical axis and the number of people engaged in producing that content on a horizontal axis, we find an interesting distribution called a Pareto curve, having a steep drop off on the left trailing off to a long shallow curve that never entirely reaches zero on the right. Currently, most content for science education is produced by a few professional curriculum designers and publishers. Some college courses are created with a professor contributing expertise and an outline of topics then handing the course design over to the college’s Instructional Design department to build the curricular pieces and content. Occasionally a high school teacher might act as a co-author or reviewer of a textbook, yet the vast majority of curriculum, lesson plans, tests, and texts are still created by professionals with years of training. Yet a long tail exists of semi-professionals and amateurs, including teachers and students and even experts in the general public who can contribute content that is equally valid (and much richer in subject matter and variety) than the professionals. If this tail could be tapped, the total content available would drastically increase, as shown by the area under the curve in the second diagram.

Science Education Content Creation - Expanded

Science Education Content Creation - Expanded


   By providing more choices and sources for information on chemicals and the elements through generating our own video podcasts, we hope to enrich the education of science students and the general public and make this information more accessible (and less expensive) than it is now. We will use podcasting as our format because it encourages and motivates students to become producers instead of consumers of content without having to worry about publishers, agents, textbook costs, shelf space, and other barriers to access created by the economics of scarcity of our current situation. On-line publishing allows virtually free storage and distribution without limits to the variety of content that can be displayed. There are no shelves to allocate, no exorbitant publishing costs. This pushes the available content down into the long tail and increases choice; anyone anywhere at any time can access and view our podcasts – all they need are an internet connection and a computer or mp3 player capable of playing the videos. Video also allows for deeper information transmission through a visual and audio medium rather than what audio or print alone can do.


   The major issue will be whether or not teams of students and subject matter experts can build professional quality videos and written documents that will be technically solid, compelling, and appealing as well as accurate. Our early trials at Mountainland Applied Technology College indicate that it can be done. When amateurs get involved and empowered to create their own content, we see a broadening of the range of quality that is produced. Although there is certainly a great deal of low quality content, there is also the potential for creating materials that are of higher quality than what is done “professionally.” On the chart shown, this is represented by the lines indicating the range of quality. When content is produced professionally it is done by teams of writers and designers and approved by committees and written for the lowest common denominator. Textbooks may be generally of good quality, but they are never great. You wouldn’t read one for fun because it is well written or so gripping that you can’t put it down. Textbooks take so long to write and publish that their content is already obsolete by the time they make it to schools. Yet content produced by individuals and small teams has the potential to be gripping and relevant and topical. It also has the potential to be awful. Our challenge is to provide the training necessary to ensure the former.

Read Full Post »

Introduction Audio [m4a]

Fractal cover image
Fractal cover image

   The Elements Unearthed: Our Discovery and Usage of the Chemical Elements is a project developed by David V. Black and his students at Mountainland Applied Technology College (MATC) in Orem, Utah. Our objective is to document the history, sources, uses, mining, refining, and hazards of the chemical elements and important industrial materials. Teams of students are visiting mine sites, refineries, chemical manufacturing plants, museums, and artisan workshops to interview scientists, engineers, historians, and other experts and to tour and videotape the sites. The video interviews, photos, and background research are being compiled into audio and video podcasts and written PDF files that will be posted at this Blog and made available on YouTube, the Apple iTunes Store, and other podcast aggregate sites.

   These podcast episodes will be a step in the right direction to preserve the history of mining and chemical refining; to provide accurate information about how chemicals are made and used (including safety precautions to observe); to encourage students to pursue careers in science, technology, engineering, and mathematics (STEM); and to ensure that the general public is well informed on vital issues such as resource depletion and environmental degradation in order to make sound decisions in the future. We intend that students, teachers, and the public will make free use of these podcast episodes.

   We hope to add you, our audience, as collaborators on this project. We need your help to test and critique the podcast episodes and provide us with feedback on what we’ve done right and what we still need to improve. We will provide a downloadable PDF evaluation form that you can fill out and return to us, as well as post comments on this Blog. We also hope that you will consider forming a team in your own community to document how the elements are used there. We are working on grant applications in the hope of securing funding to turn this into a national project, with teams from all states documenting the history and uses of the elements.

   In future posts, we will talk about who we are, what our goals are in detail, our rationale for creating this project, and our intended timeline for completion as well as how you can help out and get involved. We will also display podcast episodes that our student teams have already created and report our ongoing progress for new episodes. As they are complete, these episodes will be posted here for your feedback before they are uploaded to the broader aggregate sites.

   Please feel free to post comments related to this project including any questions you may have. If you wish to contact me directly, please e-mail me at:  dblack@mlatc.edu. You can also snail-mail me at: David V. Black, Mountainland Applied Technology College, 987 South Geneva Rd., Orem, UT  84058. I have attached a PDF version of our Feedback Questionnaire at the bottom of this post, which you can download, fill out, and return to us at the address above. We look forward to collaborating with you!

   Thank you for your interest in this project!

David V. Black

Feedback Questionnaire [pdf]

Read Full Post »

« Newer Posts